A survey on image segmentation using metaheuristic-based deformable models: state of the art and critical analysis

Graphical abstractDisplay Omitted HighlightsMetaheuristics (MHs) are general-purpose stochastic optimization methods.A Deformable Model (DM) tries to maximize its overlap with the object to segment.This survey is the first review about the hybridization of DMs and MHs.We provide guidelines to choose/design your hybrid segmentation approach.This review paper studies, analyzes and contextualizes more than 120 papers.MHs help in parameters selection, initial boundary location and DM contour evolution. Deformable models are segmentation techniques that adapt a curve with the goal of maximizing its overlap with the actual contour of an object of interest within an image. Such a process requires the definition of an optimization framework whose most critical issues include: choosing an optimization method which exhibits robustness with respect to noisy and highly-multimodal search spaces; selecting the optimization and segmentation algorithms' parameters; choosing the representation for encoding prior knowledge on the image domain of interest; and initializing the curve in a location which favors its convergence onto the boundary of the object of interest.All these problems are extensively discussed within this manuscript, with reference to the family of global stochastic optimization techniques that are generally termed metaheuristics, and are designed to solve complex optimization and machine learning problems. In particular, we present a complete study on the application of metaheuristics to image segmentation based on deformable models. This survey studies, analyzes and contextualizes the most notable and recent works on this topic, proposing an original categorization for these hybrid approaches. It aims to serve as a reference work which proposes some guidelines for choosing and designing the most appropriate combination of deformable models and metaheuristics when facing a given segmentation problem.After recalling the principles underlying deformable models and metaheuristics, we broadly review the different hybrid approaches employed to solve image segmentation problems, and conclude with a general discussion about methodological and design issues as well as future research and application trends.

[1]  Xin-She Yang,et al.  Metaheuristic Optimization: Algorithm Analysis and Open Problems , 2011, SEA.

[2]  Manuel G. Penedo,et al.  Topological active volumes: A topology-adaptive deformable model for volume segmentation , 2010, Pattern Recognit..

[3]  Stefano Cagnoni,et al.  Real-Time GPU Based Road Sign Detection and Classification , 2012, PPSN.

[4]  Ian H. Witten,et al.  The WEKA data mining software: an update , 2009, SKDD.

[5]  Christian Blum,et al.  Metaheuristics in combinatorial optimization: Overview and conceptual comparison , 2003, CSUR.

[6]  Bin Fu,et al.  Application of Snake Model Based on PSO in the Image Segmentation , 2006, 2006 6th World Congress on Intelligent Control and Automation.

[7]  Anil K. Jain,et al.  Deformable template models: A review , 1998, Signal Process..

[8]  J. Sethian,et al.  FRONTS PROPAGATING WITH CURVATURE DEPENDENT SPEED: ALGORITHMS BASED ON HAMILTON-JACOB1 FORMULATIONS , 2003 .

[9]  Masao Fukushima,et al.  On the Global Convergence of the BFGS Method for Nonconvex Unconstrained Optimization Problems , 2000, SIAM J. Optim..

[10]  Demetri Terzopoulos,et al.  Snakes: Active contour models , 2004, International Journal of Computer Vision.

[11]  Riccardo Poli,et al.  Particle swarm optimization , 1995, Swarm Intelligence.

[12]  Sophia Blau,et al.  Numerical Optimization Of Computer Models , 2016 .

[13]  César Hervás-Martínez,et al.  JCLEC: a Java framework for evolutionary computation , 2007, Soft Comput..

[14]  Timothy F. Cootes,et al.  Object Recognition by Flexible Template Matching using Genetic Algorithms , 1992, ECCV.

[15]  A. E. Eiben,et al.  Introduction to Evolutionary Computing , 2003, Natural Computing Series.

[16]  Guangsheng Feng,et al.  An Image Segmentation Algorithm Based on the Simulated Annealing and Improved Snake Model , 2007, 2007 International Conference on Mechatronics and Automation.

[17]  Alain Pitiot,et al.  Adaptive elastic segmentation of brain MRI via shape-model-guided evolutionary programming , 2002, IEEE Transactions on Medical Imaging.

[18]  Vasileios Zografos,et al.  Comparison of Optimisation Algorithms for Deformable Template Matching , 2009, ISVC.

[19]  Pablo Moscato,et al.  A Gentle Introduction to Memetic Algorithms , 2003, Handbook of Metaheuristics.

[20]  Stefano Cagnoni,et al.  Biomedical image segmentation using geometric deformable models and metaheuristics , 2015, Comput. Medical Imaging Graph..

[21]  Vicent Caselles,et al.  Geometric models for active contours , 1995, Proceedings., International Conference on Image Processing.

[22]  Daniel Rueckert,et al.  Multiscale approach to contour fitting for MR images , 1996, Medical Imaging.

[23]  Lucia Ballerini Genetic Snakes for Color Images Segmentation , 2001, EvoWorkshops.

[24]  Daniel Rueckert,et al.  Geometrically Deformable Templates for Shape-Based Segmentation and Tracking in Cardiac MR Images , 1997, EMMCVPR.

[25]  Stefano Cagnoni,et al.  Particle Swarm Optimization and Differential Evolution for model-based object detection , 2013, Appl. Soft Comput..

[26]  Li Bai,et al.  3D level set image segmentation refined by intelligent agent swarm , 2010, IEEE Congress on Evolutionary Computation.

[27]  Xun Wang,et al.  Deformable Contour Method: A Constrained Optimization Approach , 2004, International Journal of Computer Vision.

[28]  Patrick Clarysse,et al.  An exploration framework for segmentation parameter spaces , 2011, 2011 18th IEEE International Conference on Image Processing.

[29]  Jussi Tohka,et al.  Global optimization of deformable surface meshes based on genetic algorithms , 2001, Proceedings 11th International Conference on Image Analysis and Processing.

[30]  Chunming Li,et al.  Level set evolution without re-initialization: a new variational formulation , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[31]  R. Storn,et al.  Differential Evolution - A simple and efficient adaptive scheme for global optimization over continuous spaces , 2004 .

[32]  Geir Storvik,et al.  A Bayesian Approach to Dynamic Contours Through Stochastic Sampling and Simulated Annealing , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[33]  Langis Gagnon,et al.  Variable neighborhood search for geometrically deformable templates , 2002, Object recognition supported by user interaction for service robots.

[34]  Francisco Herrera,et al.  Tackling Real-Coded Genetic Algorithms: Operators and Tools for Behavioural Analysis , 1998, Artificial Intelligence Review.

[35]  Rakesh Angira,et al.  A Comparative Study of Differential Evolution Algorithms for Estimation of Kinetic Parameters , 2012 .

[36]  Manuel G. Penedo,et al.  Topological Active Nets Optimization Using Genetic Algorithms , 2006, ICIAR.

[37]  Kaisa Miettinen,et al.  Nonlinear multiobjective optimization , 1998, International series in operations research and management science.

[38]  T. W. Ridler,et al.  Picture thresholding using an iterative selection method. , 1978 .

[39]  Renaud Seguier,et al.  Genetic Snakes: Application on Lipreading , 2003, ICANNGA.

[40]  Angel D. Sappa,et al.  Simulated Annealing: A Novel Application of Image Processing in the Wood Area , 2012 .

[41]  David N. Levin,et al.  Brownian strings: segmenting images with stochastically deformable contours , 1994, Other Conferences.

[42]  Joo Kooi Tan,et al.  Segmentation method for cardiac region in CT images based on active shape model , 2010, ICCAS 2010.

[43]  Hans-Georg Beyer,et al.  The Theory of Evolution Strategies , 2001, Natural Computing Series.

[44]  Zhou,et al.  Vector bundle constraint for particle swarm optimization and its application to active contour modeling , 2007 .

[45]  Abdul Sattar,et al.  MVAAM (multi-view active appearance model) optimized by multi-objective genetic algorithm , 2008, 2008 8th IEEE International Conference on Automatic Face & Gesture Recognition.

[46]  Pierre Hansen,et al.  Variable neighbourhood search: methods and applications , 2010, Ann. Oper. Res..

[47]  A.R. Hussain Optic nerve head segmentation using genetic active contours , 2008, 2008 International Conference on Computer and Communication Engineering.

[48]  David J. Evans,et al.  Volumetric segmentation of brain images using parallel genetic algorithms , 2002, IEEE Transactions on Medical Imaging.

[49]  Ghassan Hamarneh,et al.  Evolutionary Deformable Models for Medical Image Segmentation: A Genetic Algorithm Approach to Optimizing Learned, Intuitive, and Localized Medial-based Shape Deformation , 2010, Genetic and Evolutionary Computation: Medical Applications.

[50]  Marc Parizeau,et al.  Open BEAGLE: a C++ framework for your favorite evolutionary algorithm , 2006, SEVO.

[51]  Shunren Xia,et al.  Geometric Active Contour Model with Color and Intensity Priors for Medical Image Segmentation , 2005, 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference.

[52]  Laurent D. Cohen,et al.  Using Deformable Surfaces to Segment 3-D Images and Infer Differential Structures , 1992, ECCV.

[53]  Bartholomew O. Nnaji,et al.  3D segmentation of medical images for computer-aided design and rapid prototyping of orthopedic devices , 1998, Other Conferences.

[54]  Christopher J. Taylor,et al.  Model-based image interpretation using genetic algorithms , 1992, Image Vis. Comput..

[55]  Robert T. Collins,et al.  Shape constrained figure-ground segmentation and tracking , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[56]  Manuel G. Penedo,et al.  Optic Disc Segmentation by Means of GA-Optimized Topological Active Nets , 2008, ICIAR.

[57]  P. S. Szczepaniak,et al.  Active contour based segmentation of low-contrast medical images , 2000 .

[58]  June Ho Park,et al.  Active Contour Model Based Object Contour Detection Using Genetic Algorithm with Wavelet Based Image Preprocessing , 2004 .

[59]  Paul A. Yushkevich,et al.  Deformable M-Reps for 3D Medical Image Segmentation , 2003, International Journal of Computer Vision.

[60]  Andries Petrus Engelbrecht,et al.  Fundamentals of Computational Swarm Intelligence , 2005 .

[61]  P. Liatsis,et al.  Tracking moving objects with co-evolutionary snakes , 2002, International Symposium on VIPromCom Video/Image Processing and Multimedia Communications.

[62]  Payel Ghosh,et al.  Segmentation of medical images using a genetic algorithm , 2006, GECCO.

[63]  Alfred M. Bruckstein,et al.  Finding Shortest Paths on Surfaces Using Level Sets Propagation , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[64]  Riccardo Poli,et al.  Genetic algorithm-based interactive segmentation of 3D medical images , 1999, Image Vis. Comput..

[65]  Mario Giacobini,et al.  Automatic hippocampus localization in histological images using PSO-based deformable models , 2011, GECCO '11.

[66]  Mohammad Mehdi Ebadzadeh,et al.  Application of particle swarm optimization and snake model hybrid on medical imaging , 2011, 2011 IEEE Third International Workshop On Computational Intelligence In Medical Imaging.

[67]  Stefano Cagnoni,et al.  libCudaOptimize: an open source library of GPU-based metaheuristics , 2012, GECCO '12.

[68]  Stefano Cagnoni,et al.  Multi-View Human Body Pose Estimation with CUDA-PSO , 2012, Int. J. Adapt. Resilient Auton. Syst..

[69]  Fatma Susilawati Mohamad,et al.  Feature extraction for face recognition via Active Shape Model (ASM) and Active Appearance Model (AAM) , 2018 .

[70]  K. Lai On Regularization , Formulation and Initialization of theActive Contour Models ( Snakes ) , 2007 .

[71]  Demetri Terzopoulos,et al.  Topology adaptive deformable surfaces for medical image volume segmentation , 1999, IEEE Transactions on Medical Imaging.

[72]  Jinn-Moon Yang,et al.  Integrating adaptive mutations and family competition into genetic algorithms as function optimizer , 2000, Soft Comput..

[73]  René Thomsen,et al.  A comparative study of differential evolution, particle swarm optimization, and evolutionary algorithms on numerical benchmark problems , 2004, Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753).

[74]  Yoh-Han Pao,et al.  Combinatorial optimization with use of guided evolutionary simulated annealing , 1995, IEEE Trans. Neural Networks.

[75]  Daniel Rueckert,et al.  Shape-based segmentation and tracking in 4D cardiac MR images , 1997, CVRMed.

[76]  Manuel G. Penedo,et al.  Optimization of Topological Active Nets with Differential Evolution , 2011, ICANNGA.

[77]  Manuel G. Penedo,et al.  Genetic Approaches for the Automatic Division of Topological Active Volumes , 2009, IWINAC.

[78]  R A Kirsch,et al.  Computer determination of the constituent structure of biological images. , 1971, Computers and biomedical research, an international journal.

[79]  Leonardo Bocchi,et al.  Bone segmentation using multiple communicating snakes , 2003, SPIE Medical Imaging.

[80]  Anil K. Jain,et al.  Vehicle Segmentation and Classification Using Deformable Templates , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[81]  Lucia Ballerini Genetic Snakes for Medical Images Segmentation , 1999, EvoWorkshops.

[82]  Aguilera C. Cristhian,et al.  DETECTION OF KNOTS USING XR AY TOMOGR APHIES AND DEFORMABLE CONTOURS WITH SIMULATED ANNEALING , 2008 .

[83]  Katsuhiko Sakaue,et al.  Stereo matching by the combination of genetic algorithm and active net , 1996, Systems and Computers in Japan.

[84]  Arvid Lundervold,et al.  Segmentation of brain parenchyma and cerebrospinal fluid in multispectral magnetic resonance images , 1995, IEEE Trans. Medical Imaging.

[85]  Reinhard Klette,et al.  Concise Computer Vision: An Introduction into Theory and Algorithms , 2014 .

[86]  Jean Ponce,et al.  Computer Vision: A Modern Approach , 2002 .

[87]  D. E. Goldberg,et al.  Genetic Algorithms in Search , 1989 .

[88]  Stefano Cagnoni,et al.  An experimental study on the automatic segmentation of in situ hybridization-derived images , 2013, SOCO 2013.

[89]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[90]  M. Fukumi,et al.  Feature extraction for face detection and recognition , 2004, RO-MAN 2004. 13th IEEE International Workshop on Robot and Human Interactive Communication (IEEE Catalog No.04TH8759).

[91]  Xin-She Yang,et al.  Swarm-Based Metaheuristic Algorithms and No-Free-Lunch Theorems , 2012 .

[92]  Goldberg,et al.  Genetic algorithms , 1993, Robust Control Systems with Genetic Algorithms.

[93]  R. K. Ursem Multi-objective Optimization using Evolutionary Algorithms , 2009 .

[94]  Manuel G. Penedo,et al.  Optimization of Topological Active Models with Multiobjective Evolutionary Algorithms , 2010, 2010 20th International Conference on Pattern Recognition.

[95]  Jyh-Horng Jeng,et al.  Active contour model via multi-population particle swarm optimization , 2009, Expert Syst. Appl..

[96]  Zbigniew Michalewicz,et al.  Genetic Algorithms + Data Structures = Evolution Programs , 1996, Springer Berlin Heidelberg.

[97]  Milan Sonka,et al.  Image Processing, Analysis and Machine Vision , 1993, Springer US.

[98]  Baoyao Zhou,et al.  Effective radical segmentation of offline handwritten Chinese characters by using an enhanced snake model and Genetic Algorithm , 2012, SAC '12.

[99]  Lucia Ballerini Detection and quantification of diabetic retinopathy , 1999, Optics & Photonics.

[100]  D Ruckert Segmentation and tracking in cardiovascular images using geometrically deformable models and templates. , 1998 .

[101]  Johan Montagnat,et al.  A review of deformable surfaces: topology, geometry and deformation , 2001, Image Vis. Comput..

[102]  Swarm contours: A fast self-organization approach for snake initialization , 2006, Complex..

[103]  Andrea Vedaldi,et al.  Vlfeat: an open and portable library of computer vision algorithms , 2010, ACM Multimedia.

[104]  Abdul Sattar,et al.  GGA-AAM: Novel heuristic method of gradient driven Genetic Algorithm for Active Appearance Models , 2008, 2008 Third International Conference on Digital Information Management.

[105]  Mario Giacobini,et al.  Automatic hippocampus localization in histological images using Differential Evolution-based deformable models , 2013, Pattern Recognit. Lett..

[106]  L. Ballerini An automatic system for the analysis of vascular lesions in retinal images , 1999, 1999 IEEE Nuclear Science Symposium. Conference Record. 1999 Nuclear Science Symposium and Medical Imaging Conference (Cat. No.99CH37019).

[107]  Jerry L Prince,et al.  Current methods in medical image segmentation. , 2000, Annual review of biomedical engineering.

[108]  Heekuck Oh,et al.  Neural Networks for Pattern Recognition , 1993, Adv. Comput..

[109]  Sebastián Lozano,et al.  Metaheuristic optimization frameworks: a survey and benchmarking , 2011, Soft Computing.

[110]  Kang-Hyun Jo,et al.  Road Guidance Sign Recognition in Urban Areas by Structure , 2006, 2006 International Forum on Strategic Technology.

[111]  Benjamin B. Kimia,et al.  Shapes, shocks, and deformations I: The components of two-dimensional shape and the reaction-diffusion space , 1995, International Journal of Computer Vision.

[112]  P. N. Suganthan,et al.  Differential Evolution: A Survey of the State-of-the-Art , 2011, IEEE Transactions on Evolutionary Computation.

[113]  Antonio J. Nebro,et al.  jMetal: A Java framework for multi-objective optimization , 2011, Adv. Eng. Softw..

[114]  Oscar Cordón,et al.  Image Segmentation Using Extended Topological Active Nets Optimized by Scatter Search , 2013, IEEE Computational Intelligence Magazine.

[115]  Hui Gao,et al.  Improved B-spline contour fitting using genetic algorithm for the segmentation of dental computerized tomography image sequences , 2007 .

[116]  Stefano Cagnoni,et al.  Segmentation of histological images using a metaheuristic-based level set approach , 2013, GECCO.

[117]  Michael D. Vose,et al.  The simple genetic algorithm - foundations and theory , 1999, Complex adaptive systems.

[118]  Daniela Zaharie,et al.  Influence of crossover on the behavior of Differential Evolution Algorithms , 2009, Appl. Soft Comput..

[119]  László Szilágyi,et al.  A weighted patient specific electromechanical model of the heart , 2009, 2009 5th International Symposium on Applied Computational Intelligence and Informatics.

[120]  Raul Queiroz Feitosa,et al.  Genetic Adaptation of Level Sets Parameters for Medical Imaging Segmentation , 2010 .

[121]  Andrea L. Bertozzi,et al.  Tracking Environmental Level Sets with Autonomous Vehicles , 2004 .

[122]  Rafael Stubs Parpinelli,et al.  Theory and New Applications of Swarm Intelligence , 2012 .

[123]  J. Sethian,et al.  A Fast Level Set Method for Propagating Interfaces , 1995 .

[124]  Yan Nei Law,et al.  A Multiresolution Stochastic Level Set Method for Mumford–Shah Image Segmentation , 2008, IEEE Transactions on Image Processing.

[125]  John A. Nelder,et al.  A Simplex Method for Function Minimization , 1965, Comput. J..

[126]  E.E. Pissaloux,et al.  Image Processing , 1994, Proceedings. Second Euromicro Workshop on Parallel and Distributed Processing.

[127]  G.A.R. Rad,et al.  Extraction of the Breast Cancer Tumor in Mammograms Using Genetic Active Contour , 2006, 2006 International Conference on Biomedical and Pharmaceutical Engineering.

[128]  Demetri Terzopoulos,et al.  Deformable models , 2000, The Visual Computer.

[129]  Otmar Scherzer,et al.  The CMA-ES on Riemannian Manifolds to Reconstruct Shapes in 3-D Voxel Images , 2010, IEEE Transactions on Evolutionary Computation.

[130]  Manuel Laguna,et al.  Tabu Search , 1997 .

[131]  P. K. Dutta,et al.  A GA based approach for boundary detection of left ventricle with echocardiographic image sequences , 2003, Image Vis. Comput..

[132]  Timothy F. Cootes,et al.  The Use of Active Shape Models for Locating Structures in Medical Images , 1993, IPMI.

[133]  Yuan Xu,et al.  Optimization of active-contour model parameters using genetic algorithms: segmentation of breast lesions in mammograms , 2002, SPIE Medical Imaging.

[134]  Mehrdad Tamiz,et al.  Multi-objective meta-heuristics: An overview of the current state-of-the-art , 2002, Eur. J. Oper. Res..

[135]  Günter Rudolph,et al.  Convergence analysis of canonical genetic algorithms , 1994, IEEE Trans. Neural Networks.

[136]  Timothy F. Cootes,et al.  Comparing Active Shape Models with Active Appearance Models , 1999, BMVC.

[137]  Manuel G. Penedo,et al.  Multiobjective differential evolution in the optimization of topological active models , 2013, Appl. Soft Comput..

[138]  Fred Nicolls,et al.  Active shape models with SIFT descriptors and MARS , 2015, 2014 International Conference on Computer Vision Theory and Applications (VISAPP).

[139]  Manuel G. Penedo,et al.  Topological Active Volume 3D segmentation model optimized with genetic approaches , 2011, Natural Computing.

[140]  R. Seguier,et al.  Multiobjectives genetic snakes: application on audio-visual speech recognition , 2003, Proceedings EC-VIP-MC 2003. 4th EURASIP Conference focused on Video/Image Processing and Multimedia Communications (IEEE Cat. No.03EX667).

[141]  Oscar Cordón,et al.  Extended Topological Active Nets , 2013, Image Vis. Comput..

[142]  Nikolaus Hansen,et al.  A restart CMA evolution strategy with increasing population size , 2005, 2005 IEEE Congress on Evolutionary Computation.

[143]  Nicole Vincent,et al.  Genetic Algorithm to Set Active Contour , 2003, CAIP.

[144]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[145]  Andries Petrus Engelbrecht,et al.  CIlib: A collaborative framework for Computational Intelligence algorithms - Part I , 2008, 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence).

[146]  Stefano Cagnoni,et al.  Markerless Articulated Human Body Tracking from Multi-view Video with GPU-PSO , 2010, ICES.

[147]  Manuel G. Penedo,et al.  Differential Evolution Optimization of 3D Topological Active Volumes , 2011, IWANN.

[148]  Emile H. L. Aarts,et al.  Simulated annealing and Boltzmann machines - a stochastic approach to combinatorial optimization and neural computing , 1990, Wiley-Interscience series in discrete mathematics and optimization.

[149]  Manuel G. Penedo,et al.  Localisation of the optic disc by means of GA-optimised Topological Active Nets , 2009, Image Vis. Comput..

[150]  Francisco Herrera,et al.  A taxonomy for the crossover operator for real‐coded genetic algorithms: An experimental study , 2003, Int. J. Intell. Syst..

[151]  Payel Ghosh,et al.  A Genetic Algorithm-Based Level Set Curve Evolution for Prostate Segmentation on Pelvic CT and MRI Images , 2010 .

[152]  Fabio Daolio,et al.  GPU implementation of a road sign detector based on particle swarm optimization , 2010, Evol. Intell..

[153]  Baba C. Vemuri,et al.  Shape Modeling with Front Propagation: A Level Set Approach , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[154]  Jyh-Horng Jeng,et al.  Active Contour Model Based on Multi-Population Particle Swarm Optimization , 2006, 2006 IEEE International Conference on Systems, Man and Cybernetics.

[155]  Jiangming Kan,et al.  Level Set method in standing tree image segmentation based on particle swarm optimization , 2007, International Symposium on Multispectral Image Processing and Pattern Recognition.

[156]  Guillermo Sapiro,et al.  Affine invariant scale-space , 1993, International Journal of Computer Vision.

[157]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[158]  Manuel G. Penedo,et al.  Topological Active Models optimization with Differential Evolution , 2012, Expert Syst. Appl..

[159]  Stefano Cagnoni Evolutionary Computer Vision: A Taxonomic Tutorial , 2008, 2008 Eighth International Conference on Hybrid Intelligent Systems.

[160]  Manuel G. Penedo,et al.  Genetic approaches for topological active nets optimization , 2009, Pattern Recognit..

[161]  L. MacEachern,et al.  Genetic algorithms for active contour optimization , 1998, ISCAS '98. Proceedings of the 1998 IEEE International Symposium on Circuits and Systems (Cat. No.98CH36187).

[162]  Anil K. Jain,et al.  Object Tracking Using Deformable Templates , 1998, ICCV.

[163]  G. Hamarneh,et al.  Medial-based Deformable Models in Non-convex Shape-spaces for Medical Image Segmentation using Genetic Algorithms , 2011 .

[164]  Lucia Ballerini Genetic snakes: Active contour models by genetic algorithms , 2007 .

[165]  Panos Liatsis,et al.  Co-evolutionary-based active contour models in tracking of moving obstacles , 2001 .

[166]  Thomas Martin Deserno,et al.  Automatic parameter setting for balloon models , 2000, Medical Imaging: Image Processing.

[167]  Yung-Nien Sun,et al.  Segmentation of nerve fibers using multi-level gradient watershed and fuzzy systems , 2012, Artif. Intell. Medicine.

[168]  Yujuan Xing,et al.  A Novel Multi-Swarm Particle Swarm Optimization Algorithm Applied in Active Contour Model , 2009, 2009 WRI Global Congress on Intelligent Systems.

[169]  Manuel G. Penedo,et al.  Topological Active Volumes , 2005, EURASIP J. Adv. Signal Process..

[170]  Katherine Scott,et al.  Practical Computer Vision with SimpleCV: The Simple Way to Make Technology See , 2012 .

[171]  Maximilien Vermandel,et al.  Automatic segmentation of prostate boundaries from abdominal ultrasound images using priori knowledge , 2004, 2004 2nd IEEE International Symposium on Biomedical Imaging: Nano to Macro (IEEE Cat No. 04EX821).

[172]  Nongluk Covavisaruch,et al.  Deformable Contour for Brain MR Images by Genetic Algorithm: From Rigid to Training Approaches , 1999 .

[173]  Thomas Bäck,et al.  An Overview of Evolutionary Algorithms for Parameter Optimization , 1993, Evolutionary Computation.

[174]  Dimitrios I. Fotiadis,et al.  An automated method for lumen and media-adventitia border detection in a sequence of IVUS frames , 2004, IEEE Transactions on Information Technology in Biomedicine.

[175]  Rubén Medina,et al.  Myocardial border detection from ventriculograms using support vector machines and real-coded genetic algorithms , 2010, Comput. Biol. Medicine.

[176]  El-Ghazali Talbi,et al.  ParadisEO: A Framework for the Reusable Design of Parallel and Distributed Metaheuristics , 2004, J. Heuristics.

[177]  W.F.S. Poehlman,et al.  Optimizing the Level Set Algorithm for Detecting Object Edges in MR and CT Images , 2009, IEEE Transactions on Nuclear Science.

[178]  Michael E. Wall,et al.  Galib: a c++ library of genetic algorithm components , 1996 .

[179]  Thomas R. Crimmins A Complete Set of Fourier Descriptors for Two-Dimensional Shapes , 1982, IEEE Transactions on Systems, Man, and Cybernetics.

[180]  Mario Giacobini,et al.  Automatic segmentation of hippocampus in histological images of mouse brains using deformable models and random forest , 2012, 2012 25th IEEE International Symposium on Computer-Based Medical Systems (CBMS).

[181]  Xun Wang,et al.  A comparative study of deformable contour methods on medical image segmentation , 2008, Image Vis. Comput..

[182]  Lawrence J. Fogel,et al.  Artificial Intelligence through Simulated Evolution , 1966 .

[183]  Demetri Terzopoulos,et al.  Constraints on Deformable Models: Recovering 3D Shape and Nonrigid Motion , 1988, Artif. Intell..

[184]  Guillermo Sapiro,et al.  Geodesic Active Contours , 1995, International Journal of Computer Vision.

[185]  Lucia Ballerini Genetic snakes for medical image segmentation , 1998, Optics & Photonics.

[186]  Y. N. Sun,et al.  Automated segmentation for patella from lateral knee X-ray images , 2009, 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[187]  Lucia Ballerini Multiple Genetic Snakes for People Segmentation in Video Sequences , 2003, SCIA.

[188]  Lucia Ballerini Medical image segmentation using genetic snakes , 1999, Optics + Photonics.

[189]  Manuel G. Penedo,et al.  Evolutionary multiobjective optimization of Topological Active Nets , 2010, Pattern Recognit. Lett..

[190]  El-Ghazali Talbi,et al.  Metaheuristics - From Design to Implementation , 2009 .

[191]  James E. Baker,et al.  Reducing Bias and Inefficienry in the Selection Algorithm , 1987, ICGA.

[192]  HerreraF.,et al.  Tackling Real-Coded Genetic Algorithms , 1998 .

[193]  Jan Paredis,et al.  Coevolutionary Computation , 1995, Artificial Life.

[194]  Jerry L. Prince,et al.  Medical image seg-mentation using deformable models , 2000 .

[195]  Manuel G. Penedo,et al.  Emergent Segmentation of Topological Active Nets by Means of Evolutionary Obtained Artificial Neural Networks , 2013, ICAART.

[196]  Arkadiusz Tomczyk Image Segmentation Using Adaptive Potential Active Contours , 2008, Computer Recognition Systems 2.

[197]  Ahmad Ayatollahi,et al.  Genetic Snake for Medical Ultrasound Image Segmentation , 2011, ICIAR.

[198]  Abdul Sattar,et al.  GAGM-AAM: A genetic optimization with Gaussian mixtures for Active Appearance Models , 2008, 2008 15th IEEE International Conference on Image Processing.

[199]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[200]  Theo Tryfonas,et al.  Frontiers in Artificial Intelligence and Applications , 2009 .

[201]  Thomas F. Coleman,et al.  Optimization Toolbox User's Guide , 1998 .

[202]  Helena Ramalhinho Dias Lourenço,et al.  Iterated Local Search , 2001, Handbook of Metaheuristics.

[203]  Anil K. Jain,et al.  Object Matching Using Deformable Templates , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[204]  Mario Giacobini,et al.  Visual Search of Neuropil-Enriched RNAs from Brain In Situ Hybridization Data through the Image Analysis Pipeline Hippo-ATESC , 2013, PloS one.

[205]  Christos H. Papadimitriou,et al.  Elements of the Theory of Computation , 1997, SIGA.

[206]  Timothy F. Cootes,et al.  Active Shape Models-Their Training and Application , 1995, Comput. Vis. Image Underst..

[207]  Ángel Corberán,et al.  Scatter search , 2003 .

[208]  Walter J. Gutjahr,et al.  Convergence Analysis of Metaheuristics , 2010, Matheuristics.

[209]  Dário A. B. Oliveira,et al.  Segmentation of liver, its vessels and lesions from CT images for surgical planning , 2011, Biomedical engineering online.

[210]  Carlos A. Coello Coello,et al.  Constraint-handling in nature-inspired numerical optimization: Past, present and future , 2011, Swarm Evol. Comput..

[211]  Zu-Ren Feng,et al.  Ant colony optimization for image segmentation , 2005, 2005 International Conference on Machine Learning and Cybernetics.

[212]  Manuel G. Penedo,et al.  Multiobjective Optimization of the 3D Topological Active Volume Segmentation Model , 2011, ICAART.

[213]  Huang You-rui,et al.  A Novel Method with Immune Genetic Algorithm Based on Snakes for Edge Detection of Concave Boundary , 2007, 2007 IEEE International Conference on Control and Automation.

[214]  John Fulcher,et al.  Computational Intelligence: An Introduction , 2008, Computational Intelligence: A Compendium.

[215]  John J. Grefenstette,et al.  Optimization of Control Parameters for Genetic Algorithms , 1986, IEEE Transactions on Systems, Man, and Cybernetics.

[216]  Max Mignotte,et al.  Endocardial Boundary E timation and Tracking in Echocardiographic Images using Deformable Template and Markov Random Fields , 2001, Pattern Analysis & Applications.

[217]  Hongjun Wang,et al.  Automated tongue area detection for computer‐aided diagnosis based on ASM and GA , 2012 .

[218]  Ghassan Hamarneh,et al.  Medial-Based Deformable Models in Nonconvex Shape-Spaces for Medical Image Segmentation , 2012, IEEE Transactions on Medical Imaging.

[219]  Leonardo Bocchi,et al.  Multiple Genetic Snakes for Bone Segmentation , 2003, EvoWorkshops.

[220]  Alex M. Andrew,et al.  Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science (2nd edition) , 2000 .

[221]  Matteo Matteucci,et al.  Evoptool: An extensible toolkit for evolutionary optimization algorithms comparison , 2010, IEEE Congress on Evolutionary Computation.

[222]  P. Thomas Fletcher,et al.  Principal geodesic analysis for the study of nonlinear statistics of shape , 2004, IEEE Transactions on Medical Imaging.

[223]  Nongluk Covavisaruch,et al.  A Multiscale Approach to Deformable Contour for Brain MR Images by Genetic Algorithm , 1999 .

[224]  D. Mumford,et al.  Optimal approximations by piecewise smooth functions and associated variational problems , 1989 .

[225]  Leslie Pérez Cáceres,et al.  The irace package: Iterated racing for automatic algorithm configuration , 2016 .

[226]  Ujjwal Maulik,et al.  Medical Image Segmentation Using Genetic Algorithms , 2009, IEEE Transactions on Information Technology in Biomedicine.

[227]  Y N Sun,et al.  A self-learning segmentation framework--the Taguchi approach. , 2000, Computerized medical imaging and graphics : the official journal of the Computerized Medical Imaging Society.

[228]  Chung-Ming Chen,et al.  Automatic segmentation of liver PET images , 2008, Comput. Medical Imaging Graph..

[229]  Hans-Peter Meinzer,et al.  A Shape-Guided Deformable Model with Evolutionary Algorithm Initialization for 3D Soft Tissue Segmentation , 2007, IPMI.

[230]  Rodrigo Weber dos Santos,et al.  Automatic Segmentation of Cardiac MRI Using Snakes and Genetic Algorithms , 2008, ICCS.

[231]  Michalis A. Savelonas,et al.  A genetically optimized level set approach to segmentation of thyroid ultrasound images , 2007, Applied Intelligence.

[232]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[233]  Morten Bro-nielsen Active Nets and Cubes , 1994 .

[234]  Hans-Peter Meinzer,et al.  Statistical shape models for 3D medical image segmentation: A review , 2009, Medical Image Anal..

[235]  Timothy F. Cootes,et al.  Active Appearance Models , 1998, ECCV.