Monte Carlo sampling-based methods for stochastic optimization

Abstract This paper surveys the use of Monte Carlo sampling-based methods for stochastic optimization problems. Such methods are required when—as it often happens in practice—the model involves quantities such as expectations and probabilities that cannot be evaluated exactly. While estimation procedures via sampling are well studied in statistics, the use of such methods in an optimization context creates new challenges such as ensuring convergence of optimal solutions and optimal values, testing optimality conditions, choosing appropriate sample sizes to balance the effort between optimization and estimation, and many other issues. Much work has been done in the literature to address these questions. The purpose of this paper is to give an overview of some of that work, with the goal of introducing the topic to students and researchers and providing a practical guide for someone who needs to solve a stochastic optimization problem with sampling.

[1]  Gillian M. Chin,et al.  On the Use of Stochastic Hessian Information in Unconstrained Optimization , 2010 .

[2]  J. Dupacová,et al.  ASYMPTOTIC BEHAVIOR OF STATISTICAL ESTIMATORS AND OF OPTIMAL SOLUTIONS OF STOCHASTIC OPTIMIZATION PROBLEMS , 1988 .

[3]  Tito Homem-de-Mello,et al.  Optimal Path Problems with Second-Order Stochastic Dominance Constraints , 2012 .

[4]  Gautam Mitra,et al.  Portfolio construction based on stochastic dominance and target return distributions , 2006, Math. Program..

[5]  George B. Dantzig,et al.  A Probabilistic Lower Bound for Two-Stage Stochastic Programs , 2010 .

[6]  J. Dupacová The minimax approach to stochastic programming and an illustrative application , 1987 .

[7]  Tito Homem-de-Mello,et al.  On Rates of Convergence for Stochastic Optimization Problems Under Non--Independent and Identically Distributed Sampling , 2008, SIAM J. Optim..

[8]  Harald Niederreiter,et al.  Random number generation and Quasi-Monte Carlo methods , 1992, CBMS-NSF regional conference series in applied mathematics.

[9]  Loo Hay Lee,et al.  Stochastic Simulation Optimization - An Optimal Computing Budget Allocation , 2010, System Engineering and Operations Research.

[10]  R. Wets,et al.  L-SHAPED LINEAR PROGRAMS WITH APPLICATIONS TO OPTIMAL CONTROL AND STOCHASTIC PROGRAMMING. , 1969 .

[11]  V. Kozmík,et al.  Risk-Averse Stochastic Dual Dynamic Programming , 2013 .

[12]  Alexander Shapiro,et al.  Inference of statistical bounds for multistage stochastic programming problems , 2003, Math. Methods Oper. Res..

[13]  John R. Birge,et al.  Particle Methods for Data-Driven Simulation and Optimization , 2012 .

[14]  A. Owen A Central Limit Theorem for Latin Hypercube Sampling , 1992 .

[15]  D. Siegmund Importance Sampling in the Monte Carlo Study of Sequential Tests , 1976 .

[16]  Georg Ch. Pflug,et al.  A branch and bound method for stochastic global optimization , 1998, Math. Program..

[17]  Michal Kaut,et al.  A Heuristic for Moment-Matching Scenario Generation , 2003, Comput. Optim. Appl..

[18]  Wei Wang,et al.  Sample average approximation of expected value constrained stochastic programs , 2008, Oper. Res. Lett..

[19]  Wlodzimierz Ogryczak,et al.  On consistency of stochastic dominance and mean–semideviation models , 2001, Math. Program..

[20]  Susan R. Hunter,et al.  Optimal Sampling Laws for Stochastically Constrained Simulation Optimization on Finite Sets , 2013, INFORMS J. Comput..

[21]  Werner Römisch,et al.  Scenario Reduction Algorithms in Stochastic Programming , 2003, Comput. Optim. Appl..

[22]  Alexander Shapiro,et al.  Sample Average Approximation Method for Chance Constrained Programming: Theory and Applications , 2009, J. Optimization Theory and Applications.

[23]  Michael C. Fu,et al.  An Asymptotically Efficient Simulation-Based Algorithm for Finite Horizon Stochastic Dynamic Programming , 2007, IEEE Transactions on Automatic Control.

[24]  Giuseppe Carlo Calafiore,et al.  Uncertain convex programs: randomized solutions and confidence levels , 2005, Math. Program..

[25]  G. Ch. Pflug,et al.  Stepsize Rules, Stopping Times and their Implementation in Stochastic Quasigradient Algorithms , 1988 .

[26]  Pierre L'Ecuyer,et al.  Recent Advances in Randomized Quasi-Monte Carlo Methods , 2002 .

[27]  David P. Morton,et al.  A combined deterministic and sampling-based sequential bounding method for stochastic programming , 2011, Proceedings of the 2011 Winter Simulation Conference (WSC).

[28]  F. Fred Choobineh,et al.  Stochastic dominance based comparison for system selection , 2012, Eur. J. Oper. Res..

[29]  Andrzej Ruszczynski,et al.  On Optimal Allocation of Indivisibles Under Uncertainty , 1998, Oper. Res..

[30]  Alexander Shapiro,et al.  Analysis of stochastic dual dynamic programming method , 2011, Eur. J. Oper. Res..

[31]  Johannes O. Royset,et al.  Optimality functions in stochastic programming , 2011, Mathematical Programming.

[32]  R. H. Smith Optimization for Simulation : Theory vs . Practice , 2002 .

[33]  Gül Gürkan,et al.  Solving stochastic mathematical programs with complementarity constraints using simulation , 2004, Proceedings of the 2004 Winter Simulation Conference, 2004..

[34]  Mark A. McComb Comparison Methods for Stochastic Models and Risks , 2003, Technometrics.

[35]  Tito Homem-de-Mello On Rates of Convergence for Stochastic Optimization Problems Under Non-I.I.D. Sampling , 2006 .

[36]  Jorge Nocedal,et al.  On the Use of Stochastic Hessian Information in Optimization Methods for Machine Learning , 2011, SIAM J. Optim..

[37]  A. Shapiro,et al.  Solving Chance-Constrained Stochastic Programs via Sampling and Integer Programming , 2008 .

[38]  Amit Partani,et al.  Adaptive jackknife estimators for stochastic programming , 2007 .

[39]  Michael C. Fu,et al.  Feature Article: Optimization for simulation: Theory vs. Practice , 2002, INFORMS J. Comput..

[40]  J. Hiriart-Urruty,et al.  Convex analysis and minimization algorithms , 1993 .

[41]  Darinka Dentcheva,et al.  Optimality and duality theory for stochastic optimization problems with nonlinear dominance constraints , 2004, Math. Program..

[42]  Rüdiger Schultz,et al.  An algorithm for stochastic programs with first-order dominance constraints induced by linear recourse , 2010, Discret. Appl. Math..

[43]  D. Stroock An Introduction to the Theory of Large Deviations , 1984 .

[44]  Jeff T. Linderoth,et al.  Reformulation and sampling to solve a stochastic network interdiction problem , 2008, Networks.

[45]  J. E. Kelley,et al.  The Cutting-Plane Method for Solving Convex Programs , 1960 .

[46]  Gül Gürkan,et al.  Response surface methodology with stochastic constraints for expensive simulation , 2009, J. Oper. Res. Soc..

[47]  Sean P. Meyn,et al.  The O.D.E. Method for Convergence of Stochastic Approximation and Reinforcement Learning , 2000, SIAM J. Control. Optim..

[48]  A. Shapiro,et al.  The Sample Average Approximation Method for Stochastic Programs with Integer Recourse , 2002 .

[49]  R. Pasupathy,et al.  A Guide to Sample Average Approximation , 2015 .

[50]  P. Glasserman,et al.  Asymptotically Optimal Importance Sampling and Stratification for Pricing Path‐Dependent Options , 1999 .

[51]  Stephen M. Robinson,et al.  Analysis of Sample-Path Optimization , 1996, Math. Oper. Res..

[52]  Matti Koivu,et al.  Variance reduction in sample approximations of stochastic programs , 2005, Math. Program..

[53]  Warren B. Powell,et al.  The Knowledge Gradient Algorithm for a General Class of Online Learning Problems , 2012, Oper. Res..

[54]  D. Morton,et al.  Efficient Fund of Hedge Funds Construction Under Downside Risk Measures , 2006 .

[55]  Ronald L. Wasserstein,et al.  Monte Carlo: Concepts, Algorithms, and Applications , 1997 .

[56]  Michael C. Fu,et al.  An Adaptive Sampling Algorithm for Solving Markov Decision Processes , 2005, Oper. Res..

[57]  Georg Ch. Pflug,et al.  Scenario tree generation for multiperiod financial optimization by optimal discretization , 2001, Math. Program..

[58]  Jiaqiao Hu,et al.  A Model Reference Adaptive Search Method for Stochastic Global Optimization , 2008, Commun. Inf. Syst..

[59]  George L. Nemhauser,et al.  An integer programming approach for linear programs with probabilistic constraints , 2007, Math. Program..

[60]  Jian Hu,et al.  Sample Average Approximation for Stochastic Dominance Constrained Programs , 2009 .

[61]  Warren B. Powell,et al.  Optimal Learning , 2022, Encyclopedia of Machine Learning and Data Mining.

[62]  Huifu Xu,et al.  Sample Average Approximation Methods for a Class of Stochastic Variational inequality Problems , 2010, Asia Pac. J. Oper. Res..

[63]  Wiesław Danielak,et al.  Instytucjonalne formy wspierania przedsiębiorczości , 2001 .

[64]  Enrique del Castillo,et al.  Statitical Testing of Optimality Conditions in Multiresponse Simulation-Based Optimization , 2005, Eur. J. Oper. Res..

[65]  Peter W. Glynn,et al.  Simulation-based confidence bounds for two-stage stochastic programs , 2013, Mathematical Programming.

[66]  Stephen E. Chick,et al.  New Two-Stage and Sequential Procedures for Selecting the Best Simulated System , 2001, Oper. Res..

[67]  Alexander Shapiro,et al.  A simulation-based approach to two-stage stochastic programming with recourse , 1998, Math. Program..

[68]  Peter W. Glynn,et al.  A large deviations perspective on ordinal optimization , 2004, Proceedings of the 2004 Winter Simulation Conference, 2004..

[69]  Ulrich Dieter,et al.  Discrete Optimization Approximating k-cuts using network strength as a Lagrangean relaxation , 2000 .

[70]  John N. Tsitsiklis,et al.  Neuro-Dynamic Programming , 1996, Encyclopedia of Machine Learning.

[71]  Charles Leake,et al.  Discrete Event Systems: Sensitivity Analysis and Stochastic Optimization by the Score Function Method , 1994 .

[72]  Stein W. Wallace,et al.  Generating Scenario Trees for Multistage Decision Problems , 2001, Manag. Sci..

[73]  Jun Luo,et al.  Chance Constrained Selection of the Best , 2015, INFORMS J. Comput..

[74]  Farhad Mehran,et al.  The Generalized Jackknife Statistic , 1975 .

[75]  Huifen Chen,et al.  Stochastic root finding via retrospective approximation , 2001 .

[76]  Alexander Shapiro,et al.  Conditioning of convex piecewise linear stochastic programs , 2002, Math. Program..

[77]  Alexander Shapiro,et al.  Asymptotic Behavior of Optimal Solutions in Stochastic Programming , 1993, Math. Oper. Res..

[78]  Yurii Nesterov,et al.  Primal-dual subgradient methods for convex problems , 2005, Math. Program..

[79]  P. Glynn,et al.  The Asymptotic Validity of Sequential Stopping Rules for Stochastic Simulations , 1992 .

[80]  Richard J. Beckman,et al.  A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output From a Computer Code , 2000, Technometrics.

[81]  J. S. Ivey,et al.  Nelder-Mead simplex modifications for simulation optimization , 1996 .

[82]  Jitka Dupacová,et al.  Scenario reduction in stochastic programming , 2003, Math. Program..

[83]  Tito Homem-de-Mello,et al.  Variable-sample methods for stochastic optimization , 2003, TOMC.

[84]  H. Robbins A Stochastic Approximation Method , 1951 .

[85]  S. Andradóttir,et al.  A Simulated Annealing Algorithm with Constant Temperature for Discrete Stochastic Optimization , 1999 .

[86]  Julia L. Higle,et al.  Statistical approximations forstochastic linear programming problems , 1999, Ann. Oper. Res..

[87]  Marc Goetschalckx,et al.  A stochastic programming approach for supply chain network design under uncertainty , 2004, Eur. J. Oper. Res..

[88]  David P. Morton,et al.  A Sequential Sampling Procedure for Stochastic Programming , 2011, Oper. Res..

[89]  K. Chung On a Stochastic Approximation Method , 1954 .

[90]  James C. Spall,et al.  Introduction to Stochastic Search and Optimization. Estimation, Simulation, and Control (Spall, J.C. , 2007 .

[91]  Huseyin Topaloglu,et al.  A stochastic approximation method with max-norm projections and its applications to the Q-learning algorithm , 2010, TOMC.

[92]  Andrew B. Philpott,et al.  On the convergence of stochastic dual dynamic programming and related methods , 2008, Oper. Res. Lett..

[93]  Julia L. Higle,et al.  Variance Reduction and Objective Function Evaluation in Stochastic Linear Programs , 1998, INFORMS J. Comput..

[94]  Alexander Shapiro,et al.  Consistency of Sample Estimates of Risk Averse Stochastic Programs , 2013, Journal of Applied Probability.

[95]  E. Rowland Theory of Games and Economic Behavior , 1946, Nature.

[96]  Bernardo K. Pagnoncelli,et al.  Chance-constrained problems and rare events: an importance sampling approach , 2016, Math. Program..

[97]  Leyuan Shi,et al.  Nested Partitions Method, Theory and Applications , 2008 .

[98]  Güzin Bayraksan,et al.  A probability metrics approach for reducing the bias of optimality gap estimators in two-stage stochastic linear programming , 2013, Math. Program..

[99]  Jan C. Neddermeyer Computationally Efficient Nonparametric Importance Sampling , 2008, 0805.3591.

[100]  W. Marsden I and J , 2012 .

[101]  H. L. Gray,et al.  The Generalised Jackknife Statistic , 1974 .

[102]  Marco C. Campi,et al.  A Sampling-and-Discarding Approach to Chance-Constrained Optimization: Feasibility and Optimality , 2011, J. Optim. Theory Appl..

[103]  A. Law,et al.  Relative width sequential confidence intervals for the mean , 1981 .

[104]  Paul Glasserman,et al.  Gradient Estimation Via Perturbation Analysis , 1990 .

[105]  Tito Homem-de-Mello,et al.  Some Large Deviations Results for Latin Hypercube Sampling , 2005, Proceedings of the Winter Simulation Conference, 2005..

[106]  Jian-Qiang Hu,et al.  Conditional Monte Carlo: Gradient Estimation and Optimization Applications , 2012 .

[107]  Urmila M. Diwekar,et al.  An efficient sampling technique for off-line quality control , 1997 .

[108]  Andrzej Ruszczynski,et al.  A Linearization Method for Nonsmooth Stochastic Programming Problems , 1987, Math. Oper. Res..

[109]  R. Tyrrell Rockafellar,et al.  Asymptotic Theory for Solutions in Statistical Estimation and Stochastic Programming , 1993, Math. Oper. Res..

[110]  Warren B. Powell,et al.  The Knowledge-Gradient Policy for Correlated Normal Beliefs , 2009, INFORMS J. Comput..

[111]  Shie Mannor,et al.  A distributional interpretation of robust optimization , 2010, 2010 48th Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[112]  Yinyu Ye,et al.  Distributionally Robust Optimization Under Moment Uncertainty with Application to Data-Driven Problems , 2010, Oper. Res..

[113]  Barry L. Nelson,et al.  Control Variate Remedies , 1990, Oper. Res..

[114]  Alexander Shapiro,et al.  Stochastic Approximation approach to Stochastic Programming , 2013 .

[115]  A. Ruszczynski,et al.  Portfolio optimization with stochastic dominance constraints , 2006 .

[116]  Sanjay Mehrotra,et al.  A Cutting-Surface Method for Uncertain Linear Programs with Polyhedral Stochastic Dominance Constraints , 2009, SIAM J. Optim..

[117]  Russell R. Barton,et al.  Chapter 18 Metamodel-Based Simulation Optimization , 2006, Simulation.

[118]  Stephen M. Robinson,et al.  Sample-path optimization of convex stochastic performance functions , 1996, Math. Program..

[119]  David L. Woodruff,et al.  PySP: modeling and solving stochastic programs in Python , 2012, Mathematical Programming Computation.

[120]  Soonhui Lee,et al.  Newsvendor-type models with decision-dependent uncertainty , 2012, Math. Methods Oper. Res..

[121]  David P. Morton,et al.  Stochastic Vehicle Routing with Random Travel Times , 2003, Transp. Sci..

[122]  Sigrún Andradóttir,et al.  Chapter 20 An Overview of Simulation Optimization via Random Search , 2006, Simulation.

[123]  Alexander Shapiro,et al.  On the Rate of Convergence of Optimal Solutions of Monte Carlo Approximations of Stochastic Programs , 2000, SIAM J. Optim..

[124]  Alexander Shapiro,et al.  Minimax analysis of stochastic problems , 2002, Optim. Methods Softw..

[125]  Tito Homem-de-Mello,et al.  Estimation of Derivatives of Nonsmooth Performance Measures in Regenerative Systems , 2001, Math. Oper. Res..

[126]  G. Pflug,et al.  Approximations for Probability Distributions and Stochastic Optimization Problems , 2011 .

[127]  A. Shapiro Monte Carlo Sampling Methods , 2003 .

[128]  Yi Yang,et al.  Sequential Convex Approximations to Joint Chance Constrained Programs: A Monte Carlo Approach , 2011, Oper. Res..

[129]  Mark S. Daskin,et al.  Dynamic fleet scheduling with uncertain demand and customer flexibility , 2012, Comput. Manag. Sci..

[130]  J. Dupacová,et al.  Scenario reduction in stochastic programming: An approach using probability metrics , 2000 .

[131]  Jitka Dupacová,et al.  Scenarios for Multistage Stochastic Programs , 2000, Ann. Oper. Res..

[132]  Averill M. Law,et al.  Confidence Intervals for Steady-State Simulations II: A Survey of Sequential Procedures , 1982 .

[133]  Warren B. Powell,et al.  The Correlated Knowledge Gradient for Simulation Optimization of Continuous Parameters using Gaussian Process Regression , 2011, SIAM J. Optim..

[134]  Warren B. Powell,et al.  A Knowledge-Gradient Policy for Sequential Information Collection , 2008, SIAM J. Control. Optim..

[135]  Tito Homem-de-Mello,et al.  Sampling strategies and stopping criteria for stochastic dual dynamic programming: a case study in long-term hydrothermal scheduling , 2011 .

[136]  Alexander Shapiro,et al.  The Sample Average Approximation Method for Stochastic Discrete Optimization , 2002, SIAM J. Optim..

[137]  Zbigniew Michalewicz,et al.  Simulation and Optimization , 2014 .

[138]  Tim Hesterberg,et al.  Introduction to Stochastic Search and Optimization: Estimation, Simulation, and Control , 2004, Technometrics.

[139]  J. F. Benders Partitioning procedures for solving mixed-variables programming problems , 1962 .

[140]  Lih-Yuan Deng,et al.  The Cross-Entropy Method: A Unified Approach to Combinatorial Optimization, Monte-Carlo Simulation, and Machine Learning , 2006, Technometrics.

[141]  Bernardo K. Pagnoncelli,et al.  Risk-Return Trade-off with the Scenario Approach in Practice: A Case Study in Portfolio Selection , 2012, J. Optim. Theory Appl..

[142]  Darinka Dentcheva,et al.  Concavity and efficient points of discrete distributions in probabilistic programming , 2000, Math. Program..

[143]  Shane Sebastian Drew Quasi-Monte Carlo methods for stochastic programming , 2007 .

[144]  Peter Kall,et al.  SLP-IOR: A model management system for stochastic linear programming - system design - , 1992 .

[145]  Gül Gürkan,et al.  Sample-path solution of stochastic variational inequalities , 1999, Math. Program..

[146]  Maria Prandini,et al.  The scenario approach for systems and control design , 2009, Annu. Rev. Control..

[147]  George B. Dantzig,et al.  Parallel processors for planning under uncertainty , 1990 .

[148]  Jorge Nocedal,et al.  Sample size selection in optimization methods for machine learning , 2012, Math. Program..

[149]  Loo Hay Lee,et al.  Approximate Simulation Budget Allocation for Selecting the Best Design in the Presence of Stochastic Constraints , 2012, IEEE Transactions on Automatic Control.

[150]  James R. Luedtke,et al.  A Sample Approximation Approach for Optimization with Probabilistic Constraints , 2008, SIAM J. Optim..

[151]  J. George Shanthikumar,et al.  A practical inventory control policy using operational statistics , 2005, Oper. Res. Lett..

[152]  C. Lemieux Monte Carlo and Quasi-Monte Carlo Sampling , 2009 .

[153]  Yongchao Liu,et al.  Penalized Sample Average Approximation Methods for Stochastic Mathematical Programs with Complementarity Constraints , 2011, Math. Oper. Res..

[154]  Tito Homem-de-Mello,et al.  Quas-Monte Carlo Strategies for Stochastic Optimization , 2006, Proceedings of the 2006 Winter Simulation Conference.

[155]  Hong Wan,et al.  Stochastic Trust-Region Response-Surface Method (STRONG) - A New Response-Surface Framework for Simulation Optimization , 2013, INFORMS J. Comput..

[156]  George Ch. Pflug,et al.  Optimization of Stochastic Models , 1996 .

[157]  M. V. F. Pereira,et al.  Multi-stage stochastic optimization applied to energy planning , 1991, Math. Program..

[158]  Shane G. Henderson,et al.  Call Center Staffing with Simulation and Cutting Plane Methods , 2004, Ann. Oper. Res..

[159]  D. Hunter Portfolio optimization with conditional value-at-risk objective and constraints , 2002 .

[160]  Teemu Pennanen,et al.  Epi-Convergent Discretizations of Multistage Stochastic Programs , 2005, Math. Oper. Res..

[161]  Sanjay Mehrotra,et al.  Generating Moment Matching Scenarios Using Optimization Techniques , 2013, SIAM J. Optim..

[162]  Harold J. Kushner,et al.  wchastic. approximation methods for constrained and unconstrained systems , 1978 .

[163]  Jacques F. Benders,et al.  Partitioning procedures for solving mixed-variables programming problems , 2005, Comput. Manag. Sci..

[164]  Roger J.-B. Wets,et al.  Probabilistic bounds (via large deviations) for the solutions of stochastic programming problems , 1995, Ann. Oper. Res..

[165]  M. Stein Large sample properties of simulations using latin hypercube sampling , 1987 .

[166]  Warrren B Powell,et al.  Convergent Cutting-Plane and Partial-Sampling Algorithm for Multistage Stochastic Linear Programs with Recourse , 1999 .

[167]  Julia L. Higle,et al.  Statistical verification of optimality conditions for stochastic programs with recourse , 1991, Ann. Oper. Res..

[168]  Raghu Pasupathy,et al.  On Choosing Parameters in Retrospective-Approximation Algorithms for Stochastic Root Finding and Simulation Optimization , 2010, Oper. Res..

[169]  Teemu Pennanen,et al.  A stochastic programming model for asset liability management of a Finnish pension company , 2007, Ann. Oper. Res..

[170]  Güzin Bayraksan,et al.  Fixed-Width Sequential Stopping Rules for a Class of Stochastic Programs , 2012, SIAM J. Optim..

[171]  S. M. Robinson Convergence of subdifferentials under strong stochastic convexity , 1995 .

[172]  John Darzentas,et al.  Problem Complexity and Method Efficiency in Optimization , 1983 .

[173]  René Henrion,et al.  Stability and Sensitivity of Optimization Problems with First Order Stochastic Dominance Constraints , 2007, SIAM J. Optim..

[174]  Yuri Ermoliev,et al.  Stochastic quasigradient methods. Numerical techniques for stochastic optimization , 1988 .

[175]  George B. Dantzig,et al.  Multi-stage stochastic linear programs for portfolio optimization , 1993, Ann. Oper. Res..

[176]  P. Dupuis,et al.  On sampling controlled stochastic approximation , 1991 .

[177]  Michael Patriksson,et al.  Stochastic mathematical programs with equilibrium constraints , 1999, Oper. Res. Lett..

[178]  H. Robbins,et al.  ON THE ASYMPTOTIC THEORY OF FIXED-WIDTH SEQUENTIAL CONFIDENCE INTERVALS FOR THE MEAN. , 1965 .

[179]  James C. Spall,et al.  Introduction to stochastic search and optimization - estimation, simulation, and control , 2003, Wiley-Interscience series in discrete mathematics and optimization.

[180]  Jie Xu,et al.  Industrial strength COMPASS: A comprehensive algorithm and software for optimization via simulation , 2010, TOMC.

[181]  Melvyn Sim,et al.  Distributionally Robust Optimization and Its Tractable Approximations , 2010, Oper. Res..

[182]  S. Andradóttir,et al.  Fully sequential procedures for comparing constrained systems via simulation , 2010 .

[183]  Johannes O. Royset,et al.  Optimal Budget Allocation for Sample Average Approximation , 2013, Oper. Res..

[184]  Philippe L. Toint,et al.  Convergence theory for nonconvex stochastic programming with an application to mixed logit , 2006, Math. Program..

[185]  I. Ibragimov,et al.  On Sequential Estimation , 1975 .

[186]  Mark Broadie,et al.  General Bounds and Finite-Time Improvement for the Kiefer-Wolfowitz Stochastic Approximation Algorithm , 2011, Oper. Res..

[187]  Barry L. Nelson,et al.  Stochastic kriging for simulation metamodeling , 2008, 2008 Winter Simulation Conference.

[188]  Julia L. Higle,et al.  Duality and statistical tests of optimality for two stage stochastic programs , 1996, Math. Program..

[189]  David P. Morton,et al.  Jackknife Estimators for Reducing Bias in Asset Allocation , 2006, Proceedings of the 2006 Winter Simulation Conference.

[190]  Leyuan Shi,et al.  The Nested Partitions Method , 2009 .

[191]  Seong-Hee Kim,et al.  Finding feasible systems in the presence of constraints on multiple performance measures , 2010, TOMC.

[192]  Thomas A. Henzinger,et al.  Probabilistic programming , 2014, FOSE.

[193]  Philippe L. Toint,et al.  An adaptive Monte Carlo algorithm for computing mixed logit estimators , 2006, Comput. Manag. Sci..

[194]  Sujin Kim,et al.  Convergence properties of direct search methods for stochastic optimization , 2010, Proceedings of the 2010 Winter Simulation Conference.

[195]  Boris Polyak,et al.  Acceleration of stochastic approximation by averaging , 1992 .

[196]  N. El Karoui,et al.  CONSTRAINED OPTIMIZATION WITH RESPECT TO STOCHASTIC DOMINANCE: APPLICATION TO PORTFOLIO INSURANCE , 2006 .

[197]  Guanghui Lan,et al.  An optimal method for stochastic composite optimization , 2011, Mathematical Programming.

[198]  Julia L. Higle,et al.  Stochastic Decomposition: A Statistical Method for Large Scale Stochastic Linear Programming , 1996 .

[199]  P. A. Jensen,et al.  Response surface analysis of two‐stage stochastic linear programming with recourse , 1999 .

[200]  Jason H. Goodfriend,et al.  Discrete Event Systems: Sensitivity Analysis and Stochastic Optimization by the Score Function Method , 1995 .

[201]  Alexander Keller,et al.  Fast Generation of Randomized Low-Discrepancy Point Sets , 2002 .

[202]  A. Nádas An Extension of a Theorem of Chow and Robbins on Sequential Confidence Intervals for the Mean , 1969 .

[203]  Teemu Pennanen,et al.  Epi-convergent discretizations of stochastic programs via integration quadratures , 2005, Numerische Mathematik.

[204]  Gerd Infanger,et al.  Monte Carlo (importance) sampling within a benders decomposition algorithm for stochastic linear programs , 1991, Ann. Oper. Res..

[205]  John R. Birge,et al.  The Abridged Nested Decomposition Method for Multistage Stochastic Linear Programs with Relatively Complete Recourse , 2006, Algorithmic Oper. Res..

[206]  N. Zheng,et al.  Global Optimization of Stochastic Black-Box Systems via Sequential Kriging Meta-Models , 2006, J. Glob. Optim..

[207]  E. Polaka,et al.  Efficient sample sizes in stochastic nonlinear programming , 2008 .

[209]  Y. Ermoliev Stochastic quasigradient methods and their application to system optimization , 1983 .

[210]  P. L’Ecuyer,et al.  Algorithm 958: Lattice Builder: A General Software Tool for Constructing Rank-1 Lattice Rules , 2015, ACM Trans. Math. Softw..

[211]  S. Andradóttir A Scaled Stochastic Approximation Algorithm , 1996 .

[212]  Dirk P. Kroese,et al.  The Cross Entropy Method: A Unified Approach To Combinatorial Optimization, Monte-carlo Simulation (Information Science and Statistics) , 2004 .

[213]  Jitka Dupacová,et al.  Sensitivity of Bond Portfolio's Behavior with Respect to Random Movements in Yield Curve: A Simulation Study , 2000, Ann. Oper. Res..

[214]  Darinka Dentcheva,et al.  Optimization with Stochastic Dominance Constraints , 2003, SIAM J. Optim..

[215]  Barry L. Nelson,et al.  A framework for simulation-optimization software , 2003 .

[216]  Ping Zhang Nonparametric Importance Sampling , 1996 .

[217]  E. L. Harder,et al.  The Institute of Electrical and Electronics Engineers, Inc. , 2019, 2019 IEEE International Conference on Software Architecture Companion (ICSA-C).

[218]  Rüdiger Schultz,et al.  Risk Modeling via Stochastic Dominance in Power Systems with Dispersed Generation , 2007 .

[219]  Art B. Owen,et al.  Latin supercube sampling for very high-dimensional simulations , 1998, TOMC.

[220]  Johannes O. Royset,et al.  On sample size control in sample average approximations for solving smooth stochastic programs , 2013, Computational Optimization and Applications.

[221]  A. Owen THE DIMENSION DISTRIBUTION AND QUADRATURE TEST FUNCTIONS , 2003 .

[222]  Moshe Shaked,et al.  Stochastic orders and their applications , 1994 .

[223]  Jeff T. Linderoth,et al.  Reformulation and sampling to solve a stochastic network interdiction problem , 2008 .

[224]  James R. Luedtke New Formulations for Optimization under Stochastic Dominance Constraints , 2008, SIAM J. Optim..

[225]  Shie Mannor,et al.  A Tutorial on the Cross-Entropy Method , 2005, Ann. Oper. Res..

[226]  F. Pillichshammer,et al.  Digital Nets and Sequences: Nets and sequences , 2010 .

[227]  Alexander Shapiro,et al.  Asymptotic analysis of stochastic programs , 1991, Ann. Oper. Res..

[228]  Chun-Hung Chen,et al.  Convergence Properties of Two-Stage Stochastic Programming , 2000 .

[229]  P. Jirutitijaroen,et al.  Reliability constrained multi-area adequacy planning using stochastic programming with sample-average approximations , 2008, 2008 IEEE Power and Energy Society General Meeting - Conversion and Delivery of Electrical Energy in the 21st Century.

[230]  Carlos S. Kubrusly,et al.  Stochastic approximation algorithms and applications , 1973, CDC 1973.

[231]  Jürgen Branke,et al.  Selecting a Selection Procedure , 2007, Manag. Sci..

[232]  Michael C. Fu,et al.  Optimization via simulation: A review , 1994, Ann. Oper. Res..

[233]  Alexander Shapiro,et al.  Validation analysis of mirror descent stochastic approximation method , 2012, Math. Program..

[234]  Alexander Shapiro,et al.  The empirical behavior of sampling methods for stochastic programming , 2006, Ann. Oper. Res..

[235]  R. Rubinstein,et al.  Antithetic Variates, Multivariate Dependence and Simulation of Stochastic Systems , 1985 .

[236]  Peter I. Frazier,et al.  Sequential Sampling with Economics of Selection Procedures , 2012, Manag. Sci..

[237]  David P. Morton,et al.  Monte Carlo bounding techniques for determining solution quality in stochastic programs , 1999, Oper. Res. Lett..

[238]  Michael C. Ferris,et al.  Variable-Number Sample-Path Optimization , 2008, Math. Program..

[239]  Alexander Shapiro,et al.  The Sample Average Approximation Method Applied to Stochastic Routing Problems: A Computational Study , 2003, Comput. Optim. Appl..

[240]  David P. Morton,et al.  Assessing solution quality in stochastic programs , 2006, Algorithms for Optimization with Incomplete Information.

[241]  DAVID P. MORTON,et al.  A Bayesian stochastic programming approach to an employee scheduling problem , 2004 .

[242]  Alexander Shapiro,et al.  Convex Approximations of Chance Constrained Programs , 2006, SIAM J. Optim..

[243]  Raghu Pasupathy,et al.  Retrospective approximation algorithms for the multidimensional stochastic root-finding problem , 2004, Proceedings of the 2004 Winter Simulation Conference, 2004..

[244]  J. Kiefer,et al.  Stochastic Estimation of the Maximum of a Regression Function , 1952 .

[245]  Brian Keller,et al.  Scheduling jobs sharing multiple resources under uncertainty: A stochastic programming approach , 2009 .

[246]  Jeff T. Linderoth,et al.  The impact of sampling methods on bias and variance in stochastic linear programs , 2012, Comput. Optim. Appl..

[247]  Werner Römisch,et al.  Are Quasi-Monte Carlo algorithms efficient for two-stage stochastic programs? , 2013, Comput. Optim. Appl..

[248]  A. Shapiro,et al.  Computational study of a chance constrained portfolio selection problem , 2008 .

[249]  Sanjay Mehrotra,et al.  Scenario generation for stochastic optimization problems via the sparse grid method , 2015, Comput. Optim. Appl..

[250]  Werner Römisch,et al.  Scenario tree modeling for multistage stochastic programs , 2009, Math. Program..

[251]  Magnus Hindsberger ReSa: A method for solving multistage stochastic linear programs , 2014 .

[252]  E. Polak,et al.  Reliability-based optimal design using sample average approximations , 2004 .

[253]  A. Shapiro,et al.  Stochastic mathematical programs with equilibrium constraints, modelling and sample average approximation , 2008 .

[254]  David P. Morton,et al.  Assessing solution quality in stochastic programs via sampling: INFORMS 2009 , 2009 .