A Strongly Conservative Hybrid DG/Mixed FEM for the Coupling of Stokes and Darcy Flow

We consider the coupling of free and porous media flow governed by Stokes and Darcy equations with the Beavers–Joseph–Saffman interface condition. This model is discretized using a divergence-conforming finite element for the velocities in the whole domain. Hybrid discontinuous Galerkin techniques and mixed methods are used in the Stokes and Darcy subdomains, respectively. The discretization achieves mass conservation in the sense of $$H(\mathrm {div},\Omega )$$H(div,Ω), and we obtain optimal velocity convergence. Numerical results are presented to validate the theoretical findings.

[1]  Christoph Lehrenfeld,et al.  High order exactly divergence-free Hybrid Discontinuous Galerkin Methods for unsteady incompressible flows , 2015, ArXiv.

[2]  Frédéric Hecht,et al.  Coupling Darcy and Stokes equations for porous media with cracks , 2005 .

[3]  An Waghode,et al.  Mathematical Modelling of Flow through Pleated Cartridge Filters , 2006 .

[4]  T. Arbogast,et al.  A computational method for approximating a Darcy–Stokes system governing a vuggy porous medium , 2007 .

[5]  Vahid Nassehi,et al.  Modelling of combined Navier–Stokes and Darcy flows in crossflow membrane filtration , 1998 .

[6]  E. Miglio,et al.  Mathematical and numerical models for coupling surface and groundwater flows , 2002 .

[7]  Vivette Girault,et al.  Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.

[8]  Susanne C. Brenner,et al.  Korn's inequalities for piecewise H1 vector fields , 2003, Math. Comput..

[9]  Béatrice Rivière,et al.  Locally Conservative Coupling of Stokes and Darcy Flows , 2005 .

[10]  P. Hansbo,et al.  A unified stabilized method for Stokes' and Darcy's equations , 2007 .

[11]  J. Hesthaven,et al.  On the constants in hp-finite element trace inverse inequalities , 2003 .

[12]  Béatrice Rivière,et al.  Analysis of a Discontinuous Finite Element Method for the Coupled Stokes and Darcy Problems , 2005, J. Sci. Comput..

[13]  Shuyu Sun,et al.  Coupled Generalized Nonlinear Stokes Flow with Flow through a Porous Medium , 2009, SIAM J. Numer. Anal..

[14]  Alexander Linke,et al.  On the role of the Helmholtz decomposition in mixed methods for incompressible flows and a new variational crime , 2014 .

[15]  P. Hansbo,et al.  Stabilized Crouzeix‐Raviart element for the Darcy‐Stokes problem , 2005 .

[16]  Ke Shi,et al.  An HDG method for linear elasticity with strong symmetric stresses , 2013, Math. Comput..

[17]  André Garon,et al.  Coupling Stokes and Darcy equations , 2008 .

[18]  Christoph Lehrenfeld,et al.  Hybrid Discontinuous Galerkin Methods with Relaxed H(div)-Conformity for Incompressible Flows. Part I , 2018, SIAM J. Numer. Anal..

[19]  M. Fortin,et al.  Mixed Finite Element Methods and Applications , 2013 .

[20]  Béatrice Rivière,et al.  A strongly conservative finite element method for the coupling of Stokes and Darcy flow , 2010, J. Comput. Phys..

[21]  P. Saffman On the Boundary Condition at the Surface of a Porous Medium , 1971 .

[22]  G. Gatica,et al.  A conforming mixed finite-element method for the coupling of fluid flow with porous media flow , 2008 .

[23]  J. Galvis,et al.  NON-MATCHING MORTAR DISCRETIZATION ANALYSIS FOR THE COUPLING STOKES-DARCY EQUATIONS , 2007 .

[24]  Christoph Lehrenfeld,et al.  Towards computable flows and robust estimates for inf-sup stable FEM applied to the time-dependent incompressible Navier–Stokes equations , 2017, SeMA Journal.

[25]  Béatrice Rivière,et al.  Error analysis for a monolithic discretization of coupled Darcy and Stokes problems , 2014, J. Num. Math..

[26]  Guido Kanschat,et al.  A Note on Discontinuous Galerkin Divergence-free Solutions of the Navier–Stokes Equations , 2007, J. Sci. Comput..

[27]  Guido Kanschat,et al.  A locally conservative LDG method for the incompressible Navier-Stokes equations , 2004, Math. Comput..

[28]  D. Joseph,et al.  Boundary conditions at a naturally permeable wall , 1967, Journal of Fluid Mechanics.

[29]  Francisco-Javier Sayas,et al.  Divergence-conforming HDG methods for Stokes flows , 2014, Math. Comput..

[30]  Issei Oikawa,et al.  A Hybridized Discontinuous Galerkin Method with Reduced Stabilization , 2014, Journal of Scientific Computing.

[31]  Abimael F. D. Loula,et al.  A unified mixed formulation naturally coupling Stokes and Darcy flows , 2009 .

[32]  H. Rui,et al.  A unified stabilized mixed finite element method for coupling Stokes and Darcy flows , 2009 .

[33]  Francisco-Javier Sayas,et al.  Convergence of a family of Galerkin discretizations for the Stokes-Darcy coupled problem , 2011 .

[34]  Ivan Yotov,et al.  Coupling Fluid Flow with Porous Media Flow , 2002, SIAM J. Numer. Anal..

[35]  Frédéric Hecht,et al.  Mortar finite element discretization of a model coupling Darcy and Stokes equations , 2008 .

[36]  Xiaoping,et al.  UNIFORMLY-STABLE FINITE ELEMENT METHODS FOR DARCY-STOKES-BRINKMAN MODELS , 2008 .