Weak bisimulation for coalgebras over order enriched monads

The paper introduces the notion of a weak bisimulation for coalgebras whose type is a monad satisfying some extra properties. In the first part of the paper we argue that systems with silent moves should be modelled coalgebraically as coalgebras whose type is a monad. We show that the visible and invisible part of the functor can be handled internally inside a monadic structure. In the second part we introduce the notion of an ordered saturation monad, study its properties, and show that it allows us to present two approaches towards defining weak bisimulation for coalgebras and compare them. We support the framework presented in this paper by two main examples of models: labelled transition systems and simple Segala systems.

[1]  Rob J. van Glabbeek,et al.  Branching time and abstraction in bisimulation semantics , 1996, JACM.

[2]  Dragan Masulovic,et al.  Towards Weak Bisimulation For Coalgebras , 2002, Electron. Notes Theor. Comput. Sci..

[3]  Brian A. Davey,et al.  An Introduction to Lattices and Order , 1989 .

[4]  Nancy A. Lynch,et al.  Probabilistic Simulations for Probabilistic Processes , 1994, Nord. J. Comput..

[5]  Tomasz Brengos Weak Bisimulations for Coalgebras over Ordered Functors , 2012, IFIP TCS.

[6]  Alexandra Silva,et al.  A coalgebraic view of epsilon-transitions , 2013 .

[7]  Jan J. M. M. Rutten,et al.  Universal coalgebra: a theory of systems , 2000, Theor. Comput. Sci..

[8]  Sam Staton Relating Coalgebraic Notions of Bisimulation , 2009, CALCO.

[9]  Saul A. Kripke,et al.  Semantical Considerations on Modal Logic , 2012 .

[10]  M. Barr Coequalizers and free triples , 1970 .

[11]  Dexter Kozen,et al.  On Kleene Algebras and Closed Semirings , 1990, MFCS.

[12]  Robin Milner,et al.  Communication and concurrency , 1989, PHI Series in computer science.

[13]  A. Kock Strong functors and monoidal monads , 1972 .

[14]  Dirk Hofmann,et al.  Kleisli compositions for topological spaces , 2006 .

[15]  Christel Baier,et al.  Weak Bisimulation for Fully Probabilistic Processes , 1997, FBT.

[16]  Robin Milner,et al.  A Calculus of Communicating Systems , 1980, Lecture Notes in Computer Science.

[17]  Jeffrey D. Ullman,et al.  Introduction to Automata Theory, Languages and Computation , 1979 .

[18]  D. Sangiorgi Introduction to Bisimulation and Coinduction , 2011 .

[19]  Ana Sokolova,et al.  Generic Trace Semantics via Coinduction , 2007, Log. Methods Comput. Sci..

[20]  Dirk Hofmann,et al.  Exponential Kleisli Monoids as Eilenberg–Moore Algebras , 2012, Applied Categorical Structures.

[21]  Stefan Milius On Iteratable Endofunctors , 2002, CTCS.

[22]  Philip S. Mulry,et al.  MONAD COMPOSITIONS I: GENERAL CONSTRUCTIONS AND RECURSIVE DISTRIBUTIVE LAWS , 2007 .

[23]  A. Sokolova,et al.  Coalgebraic Weak Bisimulation for Action-Type Systems , 1985, Sci. Ann. Comput. Sci..

[24]  Sergey Goncharov Kleene monads , 2010 .

[25]  Erik P. de Vink,et al.  Coalgebraic Weak Bisimulation for Action-Type Systems , 2009, Sci. Ann. Comput. Sci..

[26]  Roberto Segala,et al.  Modeling and verification of randomized distributed real-time systems , 1996 .

[27]  Richard Spencer-Smith,et al.  Modal Logic , 2007 .

[28]  Bart Jacobs,et al.  Coalgebraic Trace Semantics for Combined Possibilitistic and Probabilistic Systems , 2008, CMCS.

[29]  J. Golan Semirings and their applications , 1999 .

[30]  Philip S. Mulry,et al.  Lifting Theorems for Kleisli Categories , 1993, MFPS.

[31]  Ana Sokolova,et al.  Probabilistic systems coalgebraically: A survey , 2011, Theor. Comput. Sci..

[32]  S. Lack A 2-Categories Companion , 2007, math/0702535.

[33]  Glynn Winskel,et al.  Distributing probability over non-determinism , 2006, Mathematical Structures in Computer Science.

[34]  Jeffrey D. Ullman,et al.  Introduction to automata theory, languages, and computation, 2nd edition , 2001, SIGA.

[35]  H. Gumm Elements Of The General Theory Of Coalgebras , 1999 .

[36]  Jan J. M. M. Rutten,et al.  A note on coinduction and weak bisimilarity for while programs , 1998, RAIRO Theor. Informatics Appl..

[37]  Jan Rothe A Syntactical Approach to Weak (Bi-)Simulation for Coalgebras , 2002, CMCS.

[38]  Peter Aczel,et al.  A Final Coalgebra Theorem , 1989, Category Theory and Computer Science.

[39]  Ichiro Hasuo,et al.  Generic Forward and Backward Simulations , 2006, CONCUR.

[40]  Alexandra Silva,et al.  Trace semantics via determinization , 2012, J. Comput. Syst. Sci..

[41]  Gavin J. Seal A Kleisli-based Approach to Lax Algebras , 2009, Appl. Categorical Struct..