High-speed sub-threshold operation of carbon nanotube interconnects

Sub-threshold voltage operated circuits are the future for ultra-low-power applications. These circuits are inherently slow due to the very small sub-threshold currents. Here, the authors propose two approaches for improving the speed of SWCNT bundle interconnects driven by CNTFET-based circuits under sub-threshold conditions. First, the authors modulate the channel length of the CNTFETs that are used in the driver circuits to increase sub-threshold output current. The output current is maximum when the channel length is optimised to 15 nm. Second, the authors design driver circuits made of CNTFET-based inverters and transmission gates for SWCNT bundle interconnects at sub-threshold voltages. The authors consider five different configurations of the driver and load circuits. SPICE simulations show that transmission gates play a vital role in driver circuits by reducing the propagation delay and increasing the switching speed at high frequencies. Finally, the authors perform temperature-dependent analysis of the best cases from the proposed circuits and show that the propagation delay and power dissipated by them increases drastically at increased temperatures up to 500 K.