DAVIS: density-adaptive synthetic-vision based steering for virtual crowds

We present a novel algorithm to model density-dependent behaviours in crowd simulation. Previous work has shown that density is a key factor in governing how pedestrians adapt their behaviour. This paper specifically examines, through analysis of real pedestrian data, how density affects how agents control their rate of change of bearing angle with respect to one another. We extend upon existing synthetic vision based approaches to local collision avoidance and generate pedestrian trajectories that more faithfully represent how real people avoid each other. Our approach is capable of producing realistic human behaviours, particularly in dense, complex scenarios where the amount of time for agents to make decisions is limited.

[1]  Dinesh Manocha,et al.  ClearPath: highly parallel collision avoidance for multi-agent simulation , 2009, SCA '09.

[2]  Yiorgos Chrysanthou,et al.  The PAG Crowd: A Graph Based Approach for Efficient Data‐Driven Crowd Simulation , 2014, Comput. Graph. Forum.

[3]  Paolo Fiorini,et al.  Motion Planning in Dynamic Environments Using Velocity Obstacles , 1998, Int. J. Robotics Res..

[4]  Craig W. Reynolds Steering Behaviors For Autonomous Characters , 1999 .

[5]  Ioannis Karamouzas,et al.  Universal power law governing pedestrian interactions. , 2014, Physical review letters.

[6]  A. Birenbaum,et al.  People in places : the sociology of the familiar , 1973 .

[7]  Roland Geraerts,et al.  Real‐time density‐based crowd simulation , 2012, Comput. Animat. Virtual Worlds.

[8]  Dinesh Manocha,et al.  Velocity-based modeling of physical interactions in multi-agent simulations , 2013, SCA '13.

[9]  Dinesh Manocha,et al.  Reciprocal Velocity Obstacles for real-time multi-agent navigation , 2008, 2008 IEEE International Conference on Robotics and Automation.

[10]  Dinesh Manocha,et al.  Reciprocal n-Body Collision Avoidance , 2011, ISRR.

[11]  Ulrich Weidmann,et al.  Transporttechnik der Fussgänger: Transporttechnische Eigenschaften des Fussgängerverkehrs, Literaturauswertung , 1992 .

[12]  Stéphane Donikian,et al.  A synthetic-vision based steering approach for crowd simulation , 2010, SIGGRAPH 2010.

[13]  Xiaolian Li,et al.  Simulating the local behavior of small pedestrian groups using synthetic-vision based steering approach , 2013, VRCAI '13.

[14]  Stéphane Donikian,et al.  Experiment-based modeling, simulation and validation of interactions between virtual walkers , 2009, SCA '09.

[15]  Stéphane Donikian,et al.  A synthetic-vision based steering approach for crowd simulation , 2010, ACM Transactions on Graphics.

[16]  Norman I. Badler,et al.  Controlling individual agents in high-density crowd simulation , 2007, SCA '07.

[17]  Dinesh Manocha,et al.  PLEdestrians: a least-effort approach to crowd simulation , 2010, SCA '10.

[18]  Cécile Appert-Rolland,et al.  Realistic following behaviors for crowd simulation , 2012, Comput. Graph. Forum.

[19]  Glenn Reinman,et al.  Footstep navigation for dynamic crowds , 2011, SI3D.

[20]  Dirk Helbing,et al.  Simulating dynamical features of escape panic , 2000, Nature.

[21]  Ming C. Lin,et al.  Hybrid Long-Range Collision Avoidance for Crowd Simulation , 2013, IEEE Transactions on Visualization and Computer Graphics.

[22]  Dinesh Manocha,et al.  DenseSense: interactive crowd simulation using density-dependent filters , 2014, SCA '14.

[23]  Dimitris N. Metaxas,et al.  Eurographics/ Acm Siggraph Symposium on Computer Animation (2007) Group Behavior from Video: a Data-driven Approach to Crowd Simulation , 2022 .

[24]  Petros Faloutsos,et al.  Egocentric affordance fields in pedestrian steering , 2009, I3D '09.

[25]  Jur P. van den Berg,et al.  Meso-scale planning for multi-agent navigation , 2013, 2013 IEEE International Conference on Robotics and Automation.

[26]  Dinesh Manocha,et al.  The Hybrid Reciprocal Velocity Obstacle , 2011, IEEE Transactions on Robotics.

[27]  Adrien Treuille,et al.  Continuum crowds , 2006, ACM Trans. Graph..

[28]  Helbing,et al.  Social force model for pedestrian dynamics. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[29]  Glenn Reinman,et al.  A modular framework for adaptive agent-based steering , 2011, SI3D.

[30]  Dani Lischinski,et al.  Crowds by Example , 2007, Comput. Graph. Forum.

[31]  Paul A. Braren,et al.  How We Avoid Collisions With Stationary and Moving Obstacles , 2004 .

[32]  Julien Pettré,et al.  Following behaviors: a model for computing following distances based on prediction , 2014, MIG.

[33]  James E. Cutting,et al.  How we avoid collisions with stationary and moving objects. , 1995 .