Biomolecular structure refinement using the GROMOS simulation software

For the understanding of cellular processes the molecular structure of biomolecules has to be accurately determined. Initial models can be significantly improved by structure refinement techniques. Here, we present the refinement methods and analysis techniques implemented in the GROMOS software for biomolecular simulation. The methodology and some implementation details of the computation of NMR NOE data, 3J-couplings and residual dipolar couplings, X-ray scattering intensities from crystals and solutions and neutron scattering intensities used in GROMOS is described and refinement strategies and concepts are discussed using example applications. The GROMOS software allows structure refinement combining different types of experimental data with different types of restraining functions, while using a variety of methods to enhance conformational searching and sampling and the thermodynamically calibrated GROMOS force field for biomolecular simulation.

[1]  M. Karplus Contact Electron‐Spin Coupling of Nuclear Magnetic Moments , 1959 .

[2]  R. Brunne,et al.  Structure refinement using time-averaged J-coupling constant restraints , 1993, Journal of biomolecular NMR.

[3]  M. Misawa Temperature dependence of structure of liquid carbon tetrachloride measured by pulsed neutron total scattering , 1989 .

[4]  W. F. Gunsteren,et al.  Biomolecular structure refinement based on adaptive restraints using local-elevation simulation , 2007, Journal of biomolecular NMR.

[5]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[6]  Markus Christen,et al.  On searching in, sampling of, and dynamically moving through conformational space of biomolecular systems: A review , 2008, J. Comput. Chem..

[7]  P Gros,et al.  Inclusion of thermal motion in crystallographic structures by restrained molecular dynamics. , 1990, Science.

[8]  K Wüthrich,et al.  Pseudo-structures for the 20 common amino acids for use in studies of protein conformations by measurements of intramolecular proton-proton distance constraints with nuclear magnetic resonance. , 1983, Journal of molecular biology.

[9]  Y. Sugita,et al.  Multidimensional replica-exchange method for free-energy calculations , 2000, cond-mat/0009120.

[10]  J. Zou,et al.  Improved methods for building protein models in electron density maps and the location of errors in these models. , 1991, Acta crystallographica. Section A, Foundations of crystallography.

[11]  Markus Christen,et al.  The GROMOS software for biomolecular simulation: GROMOS05 , 2005, J. Comput. Chem..

[12]  A. Kirfel,et al.  New analytical scattering‐factor functions for free atoms and ions , 1995 .

[13]  J. Missimer,et al.  Methods of NMR structure refinement: molecular dynamics simulations improve the agreement with measured NMR data of a C-terminal peptide of GCN4-p1 , 2010, Journal of biomolecular NMR.

[14]  M. Billeter,et al.  Calibration of the angular dependence of the amide proton-C alpha proton coupling constants, 3JHN alpha, in a globular protein. Use of 3JHN alpha for identification of helical secondary structure. , 1984, Journal of molecular biology.

[15]  P. Debye,et al.  Interferenz von Röntgenstrahlen und Wärmebewegung , 1913 .

[16]  Chris Oostenbrink,et al.  A biomolecular force field based on the free enthalpy of hydration and solvation: The GROMOS force‐field parameter sets 53A5 and 53A6 , 2004, J. Comput. Chem..

[17]  R. Mcgreevy,et al.  The structure of liquid CCl4 , 1997 .

[18]  W F van Gunsteren,et al.  Calculation of NMR-relaxation parameters for flexible molecules from molecular dynamics simulations , 2001, Journal of biomolecular NMR.

[19]  A. Gronenborn,et al.  A novel, highly stable fold of the immunoglobulin binding domain of streptococcal protein G. , 1993, Science.

[20]  C. Woodward,et al.  Structure of form III crystals of bovine pancreatic trypsin inhibitor. , 1987, Journal of molecular biology.

[21]  G. Ciccotti,et al.  Numerical Integration of the Cartesian Equations of Motion of a System with Constraints: Molecular Dynamics of n-Alkanes , 1977 .

[22]  L. Hove Correlations in Space and Time and Born Approximation Scattering in Systems of Interacting Particles , 1954 .

[23]  Disulfide bond shuffling in bovine alpha-lactalbumin: MD simulation confirms experiment. , 2008, Biochemistry.

[24]  Lorna J. Smith,et al.  Residual dipolar couplings: are multiple independent alignments always possible? , 2010, Journal of biomolecular NMR.

[25]  R. Mcgreevy,et al.  The structure of liquid CC14 , 1997 .

[26]  V. Cerný Thermodynamical approach to the traveling salesman problem: An efficient simulation algorithm , 1985 .

[27]  K. Hukushima,et al.  Exchange Monte Carlo Method and Application to Spin Glass Simulations , 1995, cond-mat/9512035.

[28]  M. Billeter,et al.  Calibration of the angular dependence of the amide proton-Cα proton coupling constants, 3JHNα, in a globular protein: Use of 3JHNα for identification of helical secondary structure , 1984 .

[29]  Alan E. Mark,et al.  The GROMOS96 Manual and User Guide , 1996 .

[30]  W F van Gunsteren,et al.  Determination of protein structures from nuclear magnetic resonance data using a restrained molecular dynamics approach: the lac repressor DNA binding domain. , 1985, Biochimie.

[31]  W. F. Gunsteren,et al.  Time-dependent distance restraints in molecular dynamics simulations , 1989 .

[32]  M. Blackledge Recent progress in the study of biomolecular structure and dynamics in solution from residual dipolar couplings , 2005 .

[33]  Rolf Boelens,et al.  Restrained Molecular Dynamics Procedure for Protein Tertiary Structure Determination from NMR Data: A Lac Repressor Headpiece Structure Based on Information on J‐coupling and from Presence and Absence of NOE's , 1986 .

[34]  W. M. Haynes CRC Handbook of Chemistry and Physics , 1990 .

[35]  M. Karplus Interpretation of the Electron‐Spin Resonance Spectrum of the Methyl Radical , 1959 .

[36]  Yuko Okamoto,et al.  Replica-exchange Monte Carlo method for the isobaric isothermal ensemble , 2001 .

[37]  Andrew E. Torda,et al.  Local elevation: A method for improving the searching properties of molecular dynamics simulation , 1994, J. Comput. Aided Mol. Des..

[38]  Anna-Pitschna E. Kunz,et al.  A simple, efficient polarizable molecular model for liquid carbon tetrachloride , 2011 .

[39]  R W Hockney,et al.  Computer Simulation Using Particles , 1966 .

[40]  Andreas P. Eichenberger,et al.  Definition and testing of the GROMOS force-field versions 54A7 and 54B7 , 2011, European Biophysics Journal.

[41]  Wolfgang Jahnke,et al.  Molecular basis of coiled-coil formation , 2007, Proceedings of the National Academy of Sciences.

[42]  Michael S. Chapman,et al.  Restrained real-space macromolecular atomic refinement using a new resolution-dependent electron-density function , 1995 .

[43]  W. V. van Gunsteren,et al.  Dynamical studies of peptide motifs in the Plasmodium falciparum circumsporozoite surface protein by restrained and unrestrained MD simulations. , 1997, Journal of molecular biology.

[44]  STUDIES OF AN OFF-LATTICE MODEL FOR PROTEIN FOLDING: SEQUENCE DEPENDENCE AND IMPROVED SAMPLING AT FINITE TEMPERATURE , 1995, chem-ph/9505003.

[45]  P. Hünenberger,et al.  Interaction of the disaccharides trehalose and gentiobiose with lipid bilayers: a comparative molecular dynamics study. , 2010, Journal of molecular graphics & modelling.

[46]  B. Willis Chemical applications of thermal neutron scattering , 1973 .

[47]  A. Brunger Free R value: a novel statistical quantity for assessing the accuracy of crystal structures. , 1992 .

[48]  Wilfred F. van Gunsteren,et al.  An improved GROMOS96 force field for aliphatic hydrocarbons in the condensed phase , 2001, J. Comput. Chem..

[49]  Peter J. Artymiuk,et al.  The Structures of the Monoclinic and Orthorhombic Forms of Hen Egg-White Lysozyme at 6 Angstroms Resolution , 1981 .

[50]  C. Bugg,et al.  Structure of ubiquitin refined at 1.8 A resolution. , 1987, Journal of molecular biology.

[51]  J. Tropp Dipolar relaxation and nuclear Overhauser effects in nonrigid molecules: The effect of fluctuating internuclear distances , 1980 .

[52]  W. V. Gunsteren,et al.  Validation of the 53A6 GROMOS force field , 2005, European Biophysics Journal.

[53]  Thom W. Frühwirth,et al.  Structure and order in lamellar phases determined by small‐angle scattering , 2004 .

[54]  R. C. Weast CRC Handbook of Chemistry and Physics , 1973 .

[55]  A. Brünger Free R value: a novel statistical quantity for assessing the accuracy of crystal structures , 1992, Nature.