Decreasing isosurface complexity via discrete fitting

Since the introduction of techniques for isosurface extraction from volumetric datasets, one of the hardest problems has been to reduce the number of generated triangles (or polygons). This paper presents an algorithm that considerably reduces the number of triangles generated by a Marching Cubes algorithm, while presenting very close or shorter running times. The algorithm first assumes discretization of the dataset space and replaces cell edge interpolation by midpoint selection. Under these assumptions the extracted surfaces are composed of polygons lying within a finite number of incidences, thus allowing simple merging of the output facets into large coplanar triangular facets. Lastly, the vertices which survived the decimation process are located on their exact positions and normals are computed. An experimental evaluation of the proposed approach on datasets relevant to biomedical imaging and chemical modeling is reported. TEL:: +39 050 593451 EMAIL:: montani@iei.pi.cnr.it

[1]  R. Scopigno,et al.  Triangulating Convex Polygons Having T-Vertices , 1996, J. Graphics, GPU, & Game Tools.

[2]  Han-Wei Shen,et al.  A Near Optimal Isosurface Extraction Algorithm Using the Span Space , 1996, IEEE Trans. Vis. Comput. Graph..

[3]  Martin R. Stytz,et al.  Three-dimensional medical imaging: algorithms and computer systems , 1991, CSUR.

[4]  William E. Lorensen,et al.  Decimation of triangle meshes , 1992, SIGGRAPH.

[5]  Markus H. Gross,et al.  Efficient Triangular Surface Approximations Using Wavelets and Quadtree Data Structures , 1996, IEEE Trans. Vis. Comput. Graph..

[6]  Charles D. Hansen,et al.  Massively parallel isosurface extraction , 1992, Proceedings Visualization '92.

[7]  Enrico Puppo,et al.  Simplification, LOD and MultiresolutionPrinciples and Applications , 1997, Eurographics.

[8]  Bernd Hamann,et al.  A data reduction scheme for triangulated surfaces , 1994, Comput. Aided Geom. Des..

[9]  Claudio Montani Region representation: Parallel connected stripes , 1984, Comput. Vis. Graph. Image Process..

[10]  Martin J. Dürst,et al.  Re , 1988 .

[11]  Paolo Cignoni,et al.  A comparison of mesh simplification algorithms , 1998, Comput. Graph..

[12]  William E. Lorensen,et al.  Marching cubes: A high resolution 3D surface construction algorithm , 1987, SIGGRAPH.

[13]  Valerio Pascucci,et al.  Contour trees and small seed sets for isosurface traversal , 1997, SCG '97.

[14]  Koji Koyamada,et al.  Automatic Isosurface Propagation Using an Extrema Graph and Sorted Boundary Cell Lists , 1995, IEEE Trans. Vis. Comput. Graph..

[15]  Jacques-Olivier Lachaud Topologically defined iso-surfaces , 1996, DGCI.

[16]  Charles D. Hansen,et al.  Geometric optimization , 1993, Proceedings Visualization '93.

[17]  Bernd Hamann,et al.  The asymptotic decider: resolving the ambiguity in marching cubes , 1991, Proceeding Visualization '91.

[18]  Jane Wilhelms,et al.  Topological considerations in isosurface generation , 1994, TOGS.

[19]  Joe Warren,et al.  Compact Isocontours from sampled Data , 1992, Graphics Gems III.

[20]  Jarek Rossignac,et al.  Multi-resolution 3D approximations for rendering complex scenes , 1993, Modeling in Computer Graphics.

[21]  Roni Yagel,et al.  Octree-based decimation of marching cubes surfaces , 1996, Proceedings of Seventh Annual IEEE Visualization '96.

[22]  Michael Garland,et al.  Surface simplification using quadric error metrics , 1997, SIGGRAPH.

[23]  Kok-Lim Low,et al.  Model simplification using vertex-clustering , 1997, SI3D.

[24]  Fujio Yamaguchi,et al.  Computer-Aided Geometric Design , 2002, Springer Japan.

[25]  Paolo Cignoni,et al.  Speeding Up Isosurface Extraction Using Interval Trees , 1997, IEEE Trans. Vis. Comput. Graph..

[26]  Arthur W. Toga,et al.  Surface mapping brain function on 3D models , 1990, IEEE Computer Graphics and Applications.

[27]  Michael Zyda,et al.  Simplification of objects rendered by polygonal approximations , 1991, Comput. Graph..

[28]  Hugues Hoppe,et al.  Progressive meshes , 1996, SIGGRAPH.

[29]  Tony DeRose,et al.  Mesh optimization , 1993, SIGGRAPH.

[30]  J. Wilhelms,et al.  Octrees for faster isosurface generation , 1992, TOGS.

[31]  D. J. Hebert,et al.  Image encoding with triangulation wavelets , 1995, Optics + Photonics.

[32]  Paolo Cignoni,et al.  Metro: Measuring Error on Simplified Surfaces , 1998, Comput. Graph. Forum.

[33]  William E. Lorensen,et al.  Marching through the Visible Man , 1995, Proceedings Visualization '95.

[34]  Roberto Scopigno,et al.  Discretized Marching Cubes , 1994, Proceedings Visualization '94.

[35]  Tony DeRose,et al.  Multiresolution analysis of arbitrary meshes , 1995, SIGGRAPH.

[36]  Valerio Pascucci,et al.  Fast isocontouring for improved interactivity , 1996, VVS '96.

[37]  Russell H. Taylor,et al.  Superfaces: polygonal mesh simplification with bounded error , 1996, IEEE Computer Graphics and Applications.

[38]  Paul Ning,et al.  An evaluation of implicit surface tilers , 1993, IEEE Computer Graphics and Applications.

[39]  Paul S. Heckbert,et al.  Survey of Polygonal Surface Simplification Algorithms , 1997 .