Impossibility of Fast Stable Approximation of Analytic Functions from Equispaced Samples
暂无分享,去创建一个
Lloyd N. Trefethen | Arno B. J. Kuijlaars | Rodrigo B. Platte | A. Kuijlaars | L. Trefethen | R. Platte
[1] Chi-Wang Shu,et al. On the Gibbs Phenomenon and Its Resolution , 1997, SIAM Rev..
[2] Lloyd N. Trefethen,et al. A Rational Spectral Collocation Method with Adaptively Transformed Chebyshev Grid Points , 2006, SIAM J. Sci. Comput..
[3] S. Osher,et al. Uniformly high order accurate essentially non-oscillatory schemes, 111 , 1987 .
[4] A. U.S.,et al. Stable Computation of Multiquadric Interpolants for All Values of the Shape Parameter , 2003 .
[5] J. Preston. Ξ-filters , 1983 .
[6] Herbert E. Salzer,et al. Lagrangian interpolation at the Chebyshev points xn, [ngr][equiv]cos([ngr][pgr]/n), [ngr]=0(1) n; some unnoted advantages , 1972, Comput. J..
[7] Karl Zeller,et al. Schwankung von Polynomen zwischen Gitterpunkten , 1964 .
[8] Arno B. J. Kuijlaars,et al. Convergence Analysis of Krylov Subspace Iterations with Methods from Potential Theory , 2006, SIAM Rev..
[9] G. Stengle. Chebyshev interpolation with approximate nodes of unrestricted multiplicity , 1989 .
[10] Shivkumar Chandrasekaran,et al. Minimum Sobolev Norm schemes and applications in image processing , 2010, Electronic Imaging.
[11] John P. Boyd,et al. Exponentially-convergent strategies for defeating the Runge Phenomenon for the approximation of non-periodic functions, part two: Multi-interval polynomial schemes and multidomain Chebyshev interpolation , 2011 .
[12] Anne Gelb,et al. Robust reprojection methods for the resolution of the Gibbs phenomenon , 2006 .
[13] Jae-Hun Jung,et al. Towards the resolution of the Gibbs phenomena , 2003 .
[14] T. J. Rivlin,et al. The growth of polynomials bounded at equally spaced points , 1992 .
[15] Hartmut Ehlich. Polynome zwischen Gitterpunkten , 1966 .
[16] Karl Zeller,et al. Numerische Abschätzung von Polynomen , 1965 .
[17] Daan Huybrechs,et al. Stable high-order quadrature rules with equidistant points , 2009, J. Comput. Appl. Math..
[18] K. Zeller,et al. Auswertung der Normen von Interpolationsoperatoren , 1966 .
[19] Arnold Schönhage,et al. Fehlerfortpflanzung bei Interpolation , 1961 .
[20] P. Revesz. Interpolation and Approximation , 2010 .
[21] Bengt Fornberg,et al. A Stable Algorithm for Flat Radial Basis Functions on a Sphere , 2007, SIAM J. Sci. Comput..
[22] John P. Boyd,et al. Trouble with Gegenbauer reconstruction for defeating Gibbs' phenomenon: Runge phenomenon in the diagonal limit of Gegenbauer polynomial approximations , 2005 .
[23] Thomas Ransford,et al. Potential Theory in the Complex Plane: Bibliography , 1995 .
[24] Jean-Paul Berrut,et al. Exponential convergence of a linear rational interpolant between transformed Chebyshev points , 1999, Math. Comput..
[25] John P. Boyd. Exponentially accurate Runge-free approximation of non-periodic functions from samples on an evenly spaced grid , 2007, Appl. Math. Lett..
[26] Eitan Tadmor,et al. Filters, mollifiers and the computation of the Gibbs phenomenon , 2007, Acta Numerica.
[27] John P. Boyd,et al. Divergence (Runge Phenomenon) for least-squares polynomial approximation on an equispaced grid and Mock-Chebyshev subset interpolation , 2009, Appl. Math. Comput..
[28] N. Higham. The numerical stability of barycentric Lagrange interpolation , 2004 .
[29] Kai Hormann,et al. Barycentric rational interpolation with no poles and high rates of approximation , 2007, Numerische Mathematik.
[30] John P. Boyd. Defeating the Runge phenomenon for equispaced polynomial interpolation via Tikhonov regularization , 1992 .
[31] John P. Boyd,et al. Exponentially-Convergent Strategies for Defeating the Runge Phenomenon for the Approximation of Non-PeriodicFunctions, PartI:Single-IntervalSchemes , 2009 .
[32] Anne Gelb,et al. A Hybrid Fourier–Chebyshev Method for Partial Differential Equations , 2009, J. Sci. Comput..
[33] Peter Hoffman,et al. Numerical differentiation by high order interpolation , 1987 .
[34] Bengt Fornberg,et al. The Runge phenomenon and spatially variable shape parameters in RBF interpolation , 2007, Comput. Math. Appl..
[35] Qiqi Wang,et al. A Rational Interpolation Scheme with Superpolynomial Rate of Convergence , 2010, SIAM J. Numer. Anal..
[36] Martin Berzins. Adaptive Polynomial Interpolation on Evenly Spaced Meshes , 2007, SIAM Rev..
[37] Tobin A. Driscoll,et al. Polynomials and Potential Theory for Gaussian Radial Basis Function Interpolation , 2005, SIAM J. Numer. Anal..
[38] D. Huybrechs. On the Fourier extension of non-periodic functions , 2009 .
[39] M. Wayne Wilson. Necessary and Sufficient Conditions for Equidistant Quadrature Formula , 1970 .
[40] Daan Huybrechs,et al. On the Fourier Extension of Nonperiodic Functions , 2010, SIAM J. Numer. Anal..
[41] E. Rakhmanov,et al. Bounds for polynomials with a unit discrete norm , 2007 .
[42] T. Driscoll,et al. Interpolation in the limit of increasingly flat radial basis functions , 2002 .
[43] Lloyd N. Trefethen,et al. New Quadrature Formulas from Conformal Maps , 2008, SIAM J. Numer. Anal..
[44] Tobin A. Driscoll,et al. A Padé-based algorithm for overcoming the Gibbs phenomenon , 2004, Numerical Algorithms.
[45] R. Platte. How fast do radial basis function interpolants of analytic functions converge , 2011 .
[46] Holger Wendland,et al. Scattered Data Approximation: Conditionally positive definite functions , 2004 .