Impossibility of Fast Stable Approximation of Analytic Functions from Equispaced Samples

It is shown that no stable procedure for approximating functions from equally spaced samples can converge exponentially for analytic functions. To avoid instability, one must settle for root-exponential convergence. The proof combines a Bernstein inequality of 1912 with an estimate due to Coppersmith and Rivlin in 1992.

[1]  Chi-Wang Shu,et al.  On the Gibbs Phenomenon and Its Resolution , 1997, SIAM Rev..

[2]  Lloyd N. Trefethen,et al.  A Rational Spectral Collocation Method with Adaptively Transformed Chebyshev Grid Points , 2006, SIAM J. Sci. Comput..

[3]  S. Osher,et al.  Uniformly high order accurate essentially non-oscillatory schemes, 111 , 1987 .

[4]  A. U.S.,et al.  Stable Computation of Multiquadric Interpolants for All Values of the Shape Parameter , 2003 .

[5]  J. Preston Ξ-filters , 1983 .

[6]  Herbert E. Salzer,et al.  Lagrangian interpolation at the Chebyshev points xn, [ngr][equiv]cos([ngr][pgr]/n), [ngr]=0(1) n; some unnoted advantages , 1972, Comput. J..

[7]  Karl Zeller,et al.  Schwankung von Polynomen zwischen Gitterpunkten , 1964 .

[8]  Arno B. J. Kuijlaars,et al.  Convergence Analysis of Krylov Subspace Iterations with Methods from Potential Theory , 2006, SIAM Rev..

[9]  G. Stengle Chebyshev interpolation with approximate nodes of unrestricted multiplicity , 1989 .

[10]  Shivkumar Chandrasekaran,et al.  Minimum Sobolev Norm schemes and applications in image processing , 2010, Electronic Imaging.

[11]  John P. Boyd,et al.  Exponentially-convergent strategies for defeating the Runge Phenomenon for the approximation of non-periodic functions, part two: Multi-interval polynomial schemes and multidomain Chebyshev interpolation , 2011 .

[12]  Anne Gelb,et al.  Robust reprojection methods for the resolution of the Gibbs phenomenon , 2006 .

[13]  Jae-Hun Jung,et al.  Towards the resolution of the Gibbs phenomena , 2003 .

[14]  T. J. Rivlin,et al.  The growth of polynomials bounded at equally spaced points , 1992 .

[15]  Hartmut Ehlich Polynome zwischen Gitterpunkten , 1966 .

[16]  Karl Zeller,et al.  Numerische Abschätzung von Polynomen , 1965 .

[17]  Daan Huybrechs,et al.  Stable high-order quadrature rules with equidistant points , 2009, J. Comput. Appl. Math..

[18]  K. Zeller,et al.  Auswertung der Normen von Interpolationsoperatoren , 1966 .

[19]  Arnold Schönhage,et al.  Fehlerfortpflanzung bei Interpolation , 1961 .

[20]  P. Revesz Interpolation and Approximation , 2010 .

[21]  Bengt Fornberg,et al.  A Stable Algorithm for Flat Radial Basis Functions on a Sphere , 2007, SIAM J. Sci. Comput..

[22]  John P. Boyd,et al.  Trouble with Gegenbauer reconstruction for defeating Gibbs' phenomenon: Runge phenomenon in the diagonal limit of Gegenbauer polynomial approximations , 2005 .

[23]  Thomas Ransford,et al.  Potential Theory in the Complex Plane: Bibliography , 1995 .

[24]  Jean-Paul Berrut,et al.  Exponential convergence of a linear rational interpolant between transformed Chebyshev points , 1999, Math. Comput..

[25]  John P. Boyd Exponentially accurate Runge-free approximation of non-periodic functions from samples on an evenly spaced grid , 2007, Appl. Math. Lett..

[26]  Eitan Tadmor,et al.  Filters, mollifiers and the computation of the Gibbs phenomenon , 2007, Acta Numerica.

[27]  John P. Boyd,et al.  Divergence (Runge Phenomenon) for least-squares polynomial approximation on an equispaced grid and Mock-Chebyshev subset interpolation , 2009, Appl. Math. Comput..

[28]  N. Higham The numerical stability of barycentric Lagrange interpolation , 2004 .

[29]  Kai Hormann,et al.  Barycentric rational interpolation with no poles and high rates of approximation , 2007, Numerische Mathematik.

[30]  John P. Boyd Defeating the Runge phenomenon for equispaced polynomial interpolation via Tikhonov regularization , 1992 .

[31]  John P. Boyd,et al.  Exponentially-Convergent Strategies for Defeating the Runge Phenomenon for the Approximation of Non-PeriodicFunctions, PartI:Single-IntervalSchemes , 2009 .

[32]  Anne Gelb,et al.  A Hybrid Fourier–Chebyshev Method for Partial Differential Equations , 2009, J. Sci. Comput..

[33]  Peter Hoffman,et al.  Numerical differentiation by high order interpolation , 1987 .

[34]  Bengt Fornberg,et al.  The Runge phenomenon and spatially variable shape parameters in RBF interpolation , 2007, Comput. Math. Appl..

[35]  Qiqi Wang,et al.  A Rational Interpolation Scheme with Superpolynomial Rate of Convergence , 2010, SIAM J. Numer. Anal..

[36]  Martin Berzins Adaptive Polynomial Interpolation on Evenly Spaced Meshes , 2007, SIAM Rev..

[37]  Tobin A. Driscoll,et al.  Polynomials and Potential Theory for Gaussian Radial Basis Function Interpolation , 2005, SIAM J. Numer. Anal..

[38]  D. Huybrechs On the Fourier extension of non-periodic functions , 2009 .

[39]  M. Wayne Wilson Necessary and Sufficient Conditions for Equidistant Quadrature Formula , 1970 .

[40]  Daan Huybrechs,et al.  On the Fourier Extension of Nonperiodic Functions , 2010, SIAM J. Numer. Anal..

[41]  E. Rakhmanov,et al.  Bounds for polynomials with a unit discrete norm , 2007 .

[42]  T. Driscoll,et al.  Interpolation in the limit of increasingly flat radial basis functions , 2002 .

[43]  Lloyd N. Trefethen,et al.  New Quadrature Formulas from Conformal Maps , 2008, SIAM J. Numer. Anal..

[44]  Tobin A. Driscoll,et al.  A Padé-based algorithm for overcoming the Gibbs phenomenon , 2004, Numerical Algorithms.

[45]  R. Platte How fast do radial basis function interpolants of analytic functions converge , 2011 .

[46]  Holger Wendland,et al.  Scattered Data Approximation: Conditionally positive definite functions , 2004 .