Singulation for imaging ring arrays of capacitive micromachined ultrasonic transducers

Singulation of MEMS is a critical step in the transition from wafer-level to die-level devices. As is the case for capacitive micromachined ultrasound transducer (CMUT) ring arrays, an ideal singulation must protect the fragile membranes from the processing environment while maintaining a ring array geometry. The singulation process presented in this paper involves bonding a trench-patterned CMUT wafer onto a support wafer, deep reactive ion etching (DRIE) of the trenches, separating the CMUT wafer from the support wafer and de-tethering the CMUT device from the CMUT wafer. The CMUT arrays fabricated and singulated in this process were ring-shaped arrays, with inner and outer diameters of 5 mm and 10 mm, respectively. The fabricated CMUT ring arrays demonstrate the ability of this method to successfully and safely singulate the ring arrays and is applicable to any arbitrary 2D shaped MEMS device with uspended microstructures, taking advantage of the inherent planar attributes of DRIE.

[1]  Michaël Gauthier,et al.  A mechanical de-tethering technique for silicon MEMS etched with a DRIE process , 2009 .

[2]  Roger T. Howe,et al.  A dry wafer-reconstitution process with zero insertion force by embedded alignment guide tabs , 2012 .

[3]  Thomas L. Szabo,et al.  Diagnostic Ultrasound Imaging: Inside Out , 2004 .

[4]  Omer Oralkan,et al.  Capacitive micromachined ultrasonic transducers for medical imaging and therapy , 2011, Journal of micromechanics and microengineering : structures, devices, and systems.

[5]  O. Oralkan,et al.  Capacitive micromachined ultrasonic transducers: fabrication technology , 2005, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[6]  Chao Wang,et al.  Analytical characterization using surface-enhanced Raman scattering (SERS) and microfluidic sampling , 2015, Nanotechnology.

[7]  Thomas A. Berfield,et al.  Die separation and rupture strength for deep reactive ion etched silicon wafers , 2013 .

[8]  M. Legros,et al.  Piezocomposite and CMUT arrays assessment through in vitro imaging performances , 2008, 2008 IEEE Ultrasonics Symposium.

[9]  O. Oralkan,et al.  Forward-viewing CMUT arrays for medical imaging , 2004, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[10]  Liu Haobing,et al.  Layout controlled one-step dry etch and release of MEMS using deep RIE on SOI wafer , 2006, Journal of Microelectromechanical Systems.

[11]  Yung-Cheng Lee,et al.  Tether- and post-enabled flip-chip assembly for manufacturable RF-MEMS , 2004 .

[12]  Martin O. Culjat,et al.  Transurethral ultrasound catheter-based transducer with flexible polyimide joints , 2009, 2009 IEEE International Ultrasonics Symposium.

[13]  O. Ehrmann,et al.  Packaging and modular assembly of large-area and fine-pitch 2-D ultrasonic transducer arrays , 2013, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control.

[14]  M. Kumagai,et al.  Advanced dicing technology for semiconductor wafer -Stealth Dicing , 2006, 2006 IEEE International Symposium on Semiconductor Manufacturing.

[15]  Yonghao Cui,et al.  De-tethering of high aspect ratio metallic and polymeric MEMS/NEMS parts for the direct pick-and-place assembly of 3D microsystem , 2008 .

[16]  Miko Elwenspoek,et al.  Guidelines for etching silicon MEMS structures using fluorine high-density plasmas at cryogenic temperatures , 2002 .

[17]  A. S. Savoia,et al.  A CMUT probe for medical ultrasonography: from microfabrication to system integration , 2012, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[18]  O. Oralkan,et al.  Integration of 2D CMUT arrays with front-end electronics for volumetric ultrasound imaging , 2008, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[19]  O. Oralkan,et al.  Volumetric ultrasound imaging using 2-D CMUT arrays , 2003, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[20]  Chi Hyung Seo,et al.  Forward-looking intracardiac imaging catheters using fully integrated CMUT arrays , 2010, 2010 IEEE International Ultrasonics Symposium.

[21]  O. Oralkan,et al.  Next-gen ultrasound , 2009, IEEE Spectrum.

[22]  Chienliu Chang,et al.  A 32×32 integrated CMUT array for volumetric ultrasound imaging , 2013, 2013 IEEE International Ultrasonics Symposium (IUS).

[23]  Chienliu Chang,et al.  An integrated Ring CMUT array for endoscopic ultrasound and photoacoustic imaging , 2013, 2013 IEEE International Ultrasonics Symposium (IUS).

[24]  Chih-Kung Lee,et al.  Etching submicrometer trenches by using the Bosch process and its application to the fabrication of antireflection structures , 2005 .

[25]  Hien Nguyen,et al.  Multifunctional catheters combining intracardiac ultrasound imaging and electrophysiology sensing , 2008, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[26]  Mitsuhiro Shikida,et al.  Effect of temperature on fracture toughness in a single-crystal-silicon film and transition in its fracture mode , 2007 .

[27]  Butrus T. Khuri-Yakub,et al.  Minimally Redundant 2-D Array Designs for 3-D Medical Ultrasound Imaging , 2009, IEEE Transactions on Medical Imaging.

[28]  Karen Willcox,et al.  Kinetics and kinematics for translational motions in microgravity during parabolic flight. , 2009, Aviation, space, and environmental medicine.