Asymptotic analysis a perturbed Robin problem in a planar domain

: We consider a perforated domain Ω( ǫ ) of R 2 with a small hole of size ǫ and we study the behavior of the solution of a mixed Neumann-Robin problem in Ω( ǫ ) as the size ǫ of the small hole tends to 0. In addition to the geometric degeneracy of the problem, the ǫ -dependent Robin condition may degenerate into a Neumann condition for ǫ = 0 and the Robin datum may diverge to infinity. Our goal is to analyze the asymptotic behavior of the solutions to the problem as ǫ tends to 0 and understand how the boundary condition affects the behavior of the solutions when ǫ is close to 0.

[1]  A. Movchan,et al.  Asymptotic analysis of in-plane dynamic problems for elastic media with rigid clusters of small inclusions , 2022, Philosophical Transactions of the Royal Society A.

[2]  Gennady Mishuris,et al.  Interaction of scales for a singularly perturbed degenerating nonlinear Robin problem , 2022, Philosophical Transactions of the Royal Society A.

[3]  Paolo Musolino,et al.  Singularly Perturbed Boundary Value Problems: A Functional Analytic Approach , 2021 .

[4]  Vladimir Maz'ya,et al.  On meso-scale approximations for vibrations of membranes with lower-dimensional clusters of inertial inclusions , 2020, ArXiv.

[5]  Gennady Mishuris,et al.  A nonlinear problem for the Laplace equation with a degenerating Robin condition , 2018 .

[6]  Ralf Hiptmair,et al.  Asymptotic expansion techniques for singularly perturbed boundary integral equations , 2017, Numerische Mathematik.

[7]  Michael J. Nieves,et al.  Asymptotic Analysis of Solutions to Transmission Problems in Solids with Many Inclusions , 2016, SIAM J. Appl. Math..

[8]  Alexander B. Movchan,et al.  Eigenvalue Problem in a Solid with Many Inclusions: Asymptotic Analysis , 2016, Multiscale Model. Simul..

[9]  Alexander B. Movchan,et al.  Mesoscale Models and Approximate Solutions for Solids Containing Clouds of Voids , 2015, Multiscale Model. Simul..

[10]  M. J. Nieves,et al.  Mesoscale Approximations for Solutions of the Dirichlet Problem in A Perforated Elastic Body , 2014 .

[11]  Alexander Movchan,et al.  Green's Kernels and Meso-Scale Approximations in Perforated Domains , 2013 .

[12]  P. Musolino,et al.  A real analyticity result for a nonlinear integral operator , 2013 .

[13]  Antonio André Novotny,et al.  Topological Derivatives in Shape Optimization , 2012 .

[14]  M. D. Riva,et al.  Weakly Singular and Microscopically Hypersingular Load Perturbation for a Nonlinear Traction Boundary Value Problem: a Functional Analytic Approach , 2011 .

[15]  M. D. Riva,et al.  Microscopically weakly singularly perturbed loads for a nonlinear traction boundary value problem: a functional analytic approach , 2010 .

[16]  A. Öchsner,et al.  Transmission Conditions for Thin Reactive Heat-Conducting Interphases: General Case , 2009 .

[17]  A. Öchsner,et al.  Evaluation of Transmission Conditions for Thin Reactive Heat-Conducting Interphases , 2008 .

[18]  M. L. Cristoforis Asymptotic behavior of the solutions of a nonlinear Robin problem for the Laplace operator in a domain with a small hole: a functional analytic approach , 2007 .

[19]  M. Lanza de Cristoforis,et al.  Real Analytic Dependence of Simple and Double Layer Potentials upon Perturbation of the Support and of the Density , 2004 .

[20]  Gennady Mishuris Imperfect transmission conditions for a thin weakly compressible interface. 2D problems , 2004 .

[21]  M. L. Cristoforis Asymptotic Behaviour of the Conformal Representation of a Jordan Domain with a Small Hole in Schauder Spaces , 2003 .

[22]  V. Maz'ya,et al.  Asymptotic Theory of Elliptic Boundary Value Problems in Singularly Perturbed Domains: Volume I , 2000 .

[23]  Martin Costabel,et al.  A singularly perturbed mixed boundary value problem , 1996 .

[24]  A. M. Ilʹin,et al.  Matching of Asymptotic Expansions of Solutions of Boundary Value Problems , 1992 .

[25]  A. Il'in,et al.  Matching of Asymptotic Expansions of Solutions of Boundary Value Problems , 1992 .

[26]  W. J. Alves,et al.  Analytical solutions of the one-dimensional convective-dispersive solute transport equation , 1982 .

[27]  Reinhold Böhme,et al.  Zur Struktur der Lösungsmenge des Plateauproblems , 1973 .

[28]  M. D. Riva,et al.  A singularly perturbed nonlinear traction boundary value problem for linearized elastostatics. A functional analytic approach , 2010 .

[29]  H. Ammari,et al.  Generalized impedance boundary conditions for the maxwell equations as singular perturbations problems , 1999 .

[30]  P. Bassanini,et al.  Elliptic Partial Differential Equations of Second Order , 1997 .

[31]  A. Kirsch The Robin problem for the Helmholtz equation as a singular perturbation problem , 1985 .

[32]  Ernst P. Stephan,et al.  On the integral equation method for the plane mixed boundary value problem of the Laplacian , 1979 .

[33]  Luc Tartar,et al.  Topics in nonlinear analysis , 1978 .

[34]  F. Browder Nonlinear functional analysis , 1970 .