Vision in Drosophila: seeing the world through a model's eyes.

The fruit fly, Drosophila melanogaster, has been used for decades as a genetic model for unraveling mechanisms of development and behavior. In order to efficiently assign gene functions to cellular and behavioral processes, early measures were often necessarily simple. Much of what is known of developmental pathways was based on disrupting highly regular structures, such as patterns of cells in the eye. Similarly, reliable visual behaviors such as phototaxis and motion responses provided a solid foundation for dissecting vision. Researchers have recently begun to examine how this model organism responds to more complex or naturalistic stimuli by designing novel paradigms that more closely mimic visual behavior in the wild. Alongside these advances, the development of brain-recording strategies allied with novel genetic tools has brought about a new era of Drosophila vision research where neuronal activity can be related to behavior in the natural world.

[1]  N. Franceschini,et al.  Evidence for a sensitising pigment in fly photoreceptors , 1977, Nature.

[2]  Thomas Labhart,et al.  Genetic Dissection Reveals Two Separate Retinal Substrates for Polarization Vision in Drosophila , 2012, Current Biology.

[3]  Walter Kaiser,et al.  Neuronal correlates of sleep, wakefulness and arousal in a diurnal insect , 1983, Nature.

[4]  Armin Huber,et al.  Blue- and Green-Absorbing Visual Pigments ofDrosophila: Ectopic Expression and Physiological Characterization of the R8 Photoreceptor Cell-Specific Rh5 and Rh6 Rhodopsins , 1999, The Journal of Neuroscience.

[5]  Richard L. Martin,et al.  The Drosophila ninaE gene encodes an opsin , 1985, Cell.

[6]  R. Schümperli Evidence for colour vision inDrosophila melanogaster through spontaneous phototactic choice behaviour , 1973, Journal of Comparative Physiology A.

[7]  R. Wolf,et al.  On the fine structure of yaw torque in visual flight orientation ofDrosophila melanogaster , 2004, Journal of comparative physiology.

[8]  Alexander Y Katsov,et al.  Motion Processing Streams in Drosophila Are Behaviorally Specialized , 2008, Neuron.

[9]  S. Benzer,et al.  Photophobe (Ppb), a Drosophila mutant with a reversed sign of phototaxis; the mutation shows an allele-specific interaction with sevenless. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[10]  K. Fischbach Simultaneous and successive colour contrast expressed in “slow” phototactic behaviour of walkingDrosophila melanogaster , 1979, Journal of comparative physiology.

[11]  B. Brembs,et al.  Order in Spontaneous Behavior , 2007, PloS one.

[12]  Zhefeng Gong,et al.  Differential roles of the fan-shaped body and the ellipsoid body in Drosophila visual pattern memory. , 2009, Learning & memory.

[13]  Michael H. Dickinson,et al.  A Simple Vision-Based Algorithm for Decision Making in Flying Drosophila , 2008, Current Biology.

[14]  R. Strauss The central complex and the genetic dissection of locomotor behaviour , 2002, Current Opinion in Neurobiology.

[15]  N. Strausfeld,et al.  Dissection of the Peripheral Motion Channel in the Visual System of Drosophila melanogaster , 2007, Neuron.

[16]  Alexander Borst,et al.  Visualizing retinotopic half-wave rectified input to the motion detection circuitry of Drosophila , 2010, Nature Neuroscience.

[17]  K. Fischbach,et al.  The optic lobe of Drosophila melanogaster. I. A Golgi analysis of wild-type structure , 1989, Cell and Tissue Research.

[18]  Yueqing Peng,et al.  Dopamine-Mushroom Body Circuit Regulates Saliency-Based Decision-Making in Drosophila , 2007, Science.

[19]  S. N. Fry,et al.  Visual control of flight speed in Drosophila melanogaster , 2009, Journal of Experimental Biology.

[20]  A. Borst,et al.  Neural networks in the cockpit of the fly , 2002, Journal of Comparative Physiology A.

[21]  M Heisenberg,et al.  Behavioral analysis of Drosophila landmark learning in the flight simulator. , 1995, Learning & memory.

[22]  R. Wolf,et al.  Optomotor-blindH31—aDrosophila mutant of the lobula plate giant neurons , 1978, Journal of comparative physiology.

[23]  M. Dickinson,et al.  Visual Control of Altitude in Flying Drosophila , 2010, Current Biology.

[24]  Ralph J Greenspan,et al.  Salience modulates 20–30 Hz brain activity in Drosophila , 2003, Nature Neuroscience.

[25]  W. Quinn,et al.  Flies, genes, and learning. , 2001, Annual review of neuroscience.

[26]  Saskia E. J. de Vries,et al.  Loom-Sensitive Neurons Link Computation to Action in the Drosophila Visual System , 2012, Current Biology.

[27]  Reinhard Wolf,et al.  Visual Pattern Recognition in Drosophila Is Invariant for Retinal Position , 2004, Science.

[28]  Corey G. Washington Color Vision in Drosophila melanogaster , 2010 .

[29]  Andreas S. Thum,et al.  The Neural Substrate of Spectral Preference in Drosophila , 2008, Neuron.

[30]  F. Gabbiani,et al.  A novel neuronal pathway for visually guided escape in Drosophila melanogaster. , 2009, Journal of neurophysiology.

[31]  M. Heisenberg,et al.  Distinct memory traces for two visual features in the Drosophila brain , 2006, Nature.

[32]  Claude Desplan,et al.  The Color-Vision Circuit in the Medulla of Drosophila , 2008, Current Biology.

[33]  J. Flanagan,et al.  Dscam2 mediates axonal tiling in the Drosophila visual system , 2007, Nature.

[34]  Michael B. Reiser,et al.  Corrigendum: Two-photon calcium imaging from head-fixed Drosophila during optomotor walking behavior , 2011, Nature Methods.

[35]  F. Bonneton,et al.  Ecdysone receptors: from the Ashburner model to structural biology. , 2013, Annual review of entomology.

[36]  Ian A. Meinertzhagen,et al.  Cholinergic Circuits Integrate Neighboring Visual Signals in a Drosophila Motion Detection Pathway , 2011, Current Biology.

[37]  G. D. Mccann,et al.  Optomotor response studies of insect vision , 1965, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[38]  N. Perrimon,et al.  Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. , 1993, Development.

[39]  Michael H. Dickinson,et al.  Multi-camera real-time three-dimensional tracking of multiple flying animals , 2010, Journal of The Royal Society Interface.

[40]  B. Brembs,et al.  Conditioning with compound stimuli in Drosophila melanogaster in the flight simulator. , 2001, The Journal of experimental biology.

[41]  Pietro Perona,et al.  High-throughput Ethomics in Large Groups of Drosophila , 2009, Nature Methods.

[42]  Karl Georg Götz,et al.  Flight control in Drosophila by visual perception of motion , 1968, Kybernetik.

[43]  Yan Zhu,et al.  Peripheral Visual Circuits Functionally Segregate Motion and Phototaxis Behaviors in the Fly , 2009, Current Biology.

[44]  W. Harris,et al.  Genetic dissection of the photoreceptor system in the compound eye of Drosophila melanogaster , 1976, The Journal of physiology.

[45]  Alexander Borst,et al.  ON and OFF pathways in Drosophila motion vision , 2010, Nature.

[46]  Roland Strauss,et al.  Virtual-Reality Techniques Resolve the Visual Cues Used by Fruit Flies to Evaluate Object Distances , 2002, Current Biology.

[47]  Damon A. Clark,et al.  Defining the Computational Structure of the Motion Detector in Drosophila , 2011, Neuron.

[48]  Nikos K. Logothetis,et al.  Local field potentials, BOLD and spiking activity: Relationships and physiological mechanisms , 2010 .

[49]  A. Borst,et al.  Response Properties of Motion-Sensitive Visual Interneurons in the Lobula Plate of Drosophila melanogaster , 2008, Current Biology.

[50]  Michael H Dickinson,et al.  The influence of visual landscape on the free flight behavior of the fruit fly Drosophila melanogaster. , 2002, The Journal of experimental biology.

[51]  R. Desimone,et al.  Neural mechanisms of selective visual attention. , 1995, Annual review of neuroscience.

[52]  Angelique C. Paulk,et al.  An Automated Paradigm for Drosophila Visual Psychophysics , 2011, PloS one.

[53]  M. Dickinson,et al.  Flying Drosophila Orient to Sky Polarization , 2012, Current Biology.

[54]  É. Bourg,et al.  Learned suppression of photopositive tendencies inDrosophila melanogaster , 2002, Animal learning & behavior.

[55]  A Guo,et al.  Choice Behavior of Drosophila Facing Contradictory Visual Cues , 2001, Science.

[56]  Julie H. Simpson,et al.  Genetic Manipulation of Genes and Cells in the Nervous System of the Fruit Fly , 2011, Neuron.

[57]  Michael B. Reiser,et al.  Visual Place Learning in Drosophila melanogaster , 2011, Nature.

[58]  R. A. Bohm,et al.  A genetic mosaic approach for neural circuit mapping in Drosophila , 2010, Proceedings of the National Academy of Sciences.

[59]  M. Dickinson,et al.  Active flight increases the gain of visual motion processing in Drosophila , 2010, Nature Neuroscience.

[60]  Santiago Ramón y Cajal,et al.  Contribución al conocimiento de los centros nerviosos de los insectos , 1915 .

[61]  Haojiang Luan,et al.  Refined Spatial Manipulation of Neuronal Function by Combinatorial Restriction of Transgene Expression , 2006, Neuron.

[62]  C. Desplan,et al.  Power tools for gene expression and clonal analysis in Drosophila , 2011, Nature Methods.

[63]  B. Hassenstein,et al.  Systemtheoretische Analyse der Zeit-, Reihenfolgen- und Vorzeichenauswertung bei der Bewegungsperzeption des Rüsselkäfers Chlorophanus , 1956 .

[64]  A. Borst Drosophila's View on Insect Vision , 2009, Current Biology.

[65]  A. Borst,et al.  Columnar cells necessary for motion responses of wide-field visual interneurons in Drosophila , 2012, Journal of Comparative Physiology.

[66]  G. Rubin,et al.  Isolation and structure of a rhodopsin gene from D. melanogaster , 1985, Cell.

[67]  M. Heisenberg,et al.  The use of mutations for the partial degradation of vision inDrosophila melanogaster , 1975, Journal of comparative physiology.

[68]  Discrimination of some visual patterns inDrosophila melanogaster , 1982, Journal of comparative physiology.

[69]  James G. Burns,et al.  Use of Spatial Information and Search Strategies in a Water Maze Analog in Drosophila melanogaster , 2010, PloS one.

[70]  M Heisenberg,et al.  Visual pattern memory without shape recognition. , 1995, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[71]  M. Heisenberg,et al.  Vision in Drosophila: Genetics of Microbehavior , 2011 .

[72]  Michael B. Reiser,et al.  Two-photon calcium imaging from motion-sensitive neurons in head-fixed Drosophila during optomotor walking behavior , 2010, Nature Methods.

[73]  K. Götz,et al.  Fractionation of Drosophila populations according to optomotor traits. , 1970, The Journal of experimental biology.

[74]  M. Juusola,et al.  Intrinsic Activity in the Fly Brain Gates Visual Information during Behavioral Choices , 2010, PloS one.

[75]  W. Pak,et al.  Nonphototactic Mutants in a Study of Vision of Drosophila , 1969, Nature.

[76]  S. Benzer,et al.  Abnormal Electroretinograms in Visual Mutants of Drosophila , 1969, Nature.

[77]  Martin Heisenberg,et al.  Comparative behavioral studies on two visual mutants ofDrosophila , 1972, Journal of comparative physiology.

[78]  M. Heisenberg Pattern recognition in insects , 1995, Current Opinion in Neurobiology.

[79]  Michael B. Reiser,et al.  Walking Modulates Speed Sensitivity in Drosophila Motion Vision , 2010, Current Biology.

[80]  Michael H Dickinson,et al.  Spatial organization of visuomotor reflexes in Drosophila , 2004, Journal of Experimental Biology.

[81]  B. Tabashnik,et al.  Development time and resistance to Bt crops , 1999, Nature.

[82]  Alexander G. Cheroske,et al.  Polarization Vision and Its Role in Biological Signaling1 , 2003, Integrative and comparative biology.

[83]  M. Dickinson,et al.  Visually Mediated Motor Planning in the Escape Response of Drosophila , 2008, Current Biology.

[84]  R Wehner,et al.  Spontaneous pattern preferences of Drosophila melanogaster to black areas in various parts of the visual field. , 1972, Journal of insect physiology.

[85]  A. Borst,et al.  Internal Structure of the Fly Elementary Motion Detector , 2011, Neuron.

[86]  Michael H. Dickinson,et al.  TrackFly: Virtual reality for a behavioral system analysis in free-flying fruit flies , 2008, Journal of Neuroscience Methods.

[87]  Gilles Laurent,et al.  Transformation of Olfactory Representations in the Drosophila Antennal Lobe , 2004, Science.

[88]  Michael H Dickinson,et al.  Collision-avoidance and landing responses are mediated by separate pathways in the fruit fly, Drosophila melanogaster. , 2002, The Journal of experimental biology.

[89]  R. Hardie Functional Organization of the Fly Retina , 1985 .

[90]  M. Posner,et al.  Attention and the detection of signals. , 1980, Journal of experimental psychology.

[91]  M. Heisenberg,et al.  The lethal(1)optomotor-blind gene of Drosophila melanogaster is a major organizer of optic lobe development: isolation and characterization of the gene. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[92]  Willem Takken,et al.  Host preferences of blood-feeding mosquitoes. , 2013, Annual review of entomology.

[93]  R. Wolf,et al.  On the fine structure of yaw torque in visual flight orientation ofDrosophila melanogaster , 1979, Journal of comparative physiology.

[94]  B Schnell,et al.  Processing of horizontal optic flow in three visual interneurons of the Drosophila brain. , 2010, Journal of neurophysiology.

[95]  R. S. McEwen The reactions to light and to gravity in Drosophila and its mutants , 1918 .

[96]  Reinhard Wolf,et al.  Visual pattern recognition in Drosophila involves retinotopic matching , 1993, Nature.

[97]  M. J. Allen,et al.  Making an escape: development and function of the Drosophila giant fibre system. , 2006, Seminars in cell & developmental biology.

[98]  W. Stark,et al.  Specific receptor input into spectral preference inDrosophila , 2004, Journal of comparative physiology.

[99]  S. Benzer BEHAVIORAL MUTANTS OF Drosophila ISOLATED BY COUNTERCURRENT DISTRIBUTION. , 1967, Proceedings of the National Academy of Sciences of the United States of America.

[100]  A Borst,et al.  Drosophila mushroom body mutants are deficient in olfactory learning. , 1985, Journal of neurogenetics.

[101]  Michael B. Reiser,et al.  Neural correlates of illusory motion perception in Drosophila , 2011, Proceedings of the National Academy of Sciences.

[102]  M. Heisenberg,et al.  Attracting the attention of a fly , 2011, Proceedings of the National Academy of Sciences.

[103]  Li Liu,et al.  Context generalization in Drosophila visual learning requires the mushroom bodies , 1999, Nature.

[104]  A. Borst,et al.  Seeing Things in Motion: Models, Circuits, and Mechanisms , 2011, Neuron.

[105]  Karl Georg Götz,et al.  Visual control of locomotion in the walking fruitflyDrosophila , 1973, Journal of comparative physiology.

[106]  Martin Heisenberg,et al.  Contribution of photoreceptor subtypes to spectral wavelength preference in Drosophila , 2010, Proceedings of the National Academy of Sciences.

[107]  Bruno van Swinderen,et al.  Shared Visual Attention and Memory Systems in the Drosophila Brain , 2009, PloS one.

[108]  Elisabeth Folkers,et al.  Visual learning and memory of Drosophila melanogaster wild type CS and the mutants dunce1, amnesiac, turnip and rutabaga , 1982 .

[109]  W. Reichardt Movement perception in insects , 1969 .

[110]  B. T. Bloomquist,et al.  Isolation of a putative phospholipase c gene of drosophila, norpA, and its role in phototransduction , 1988, Cell.