Continuous variable quantum communication with bright entangled optical beams

In this paper, we briefly introduce the basic concepts and protocols of continuous variable quantum communication, and then summarize the experimental researches accomplished by our group in this field. The main features of quantum communication systems used in our experiments are: (1) The bright entangled optical beams with the anticorrelated amplitude quadratures and the correlated phase quadratures that serve as the entanglement resources and (2) The Bell-state direct detection systems are utilized in the measurements of quantum entanglement and transmitted signals instead of the usually balanced homodyne detectors.

[1]  Jing Zhang,et al.  Quantum teleportation and dense coding by means of bright amplitude-squeezed light and direct measurement of a Bell state , 2000 .

[2]  H. Weinfurter,et al.  Experimental quantum teleportation , 1997, Nature.

[3]  Akira Furusawa,et al.  Detecting genuine multipartite continuous-variable entanglement , 2003 .

[4]  G Leuchs,et al.  Continuous variable quantum cryptography: beating the 3 dB loss limit. , 2002, Physical review letters.

[5]  A. Shimony,et al.  Bell’s theorem without inequalities , 1990 .

[6]  Elanor H. Huntington,et al.  Unconditional continuous-variable dense coding , 2002 .

[7]  H. Weinfurter,et al.  Experimental Entanglement Swapping: Entangling Photons That Never Interacted , 1998 .

[8]  C. Xie,et al.  Quantum dense coding exploiting a bright Einstein-Podolsky-Rosen beam. , 2002, Physical review letters.

[9]  Braunstein,et al.  Multipartite entanglement for continuous variables: A quantum teleportation network , 1999, Physical review letters.

[10]  C. Xie,et al.  Quantum variances and squeezing of output field from NOPA , 1999 .

[11]  C. Xie,et al.  Experimental demonstration of tripartite entanglement and controlled dense coding for continuous variables. , 2002, Physical review letters.

[12]  Weinfurter,et al.  Dense coding in experimental quantum communication. , 1996, Physical review letters.

[13]  Yang Tao,et al.  The security and recent technology of quantum key distribution , 2006 .

[14]  Charles H. Bennett,et al.  Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. , 1992, Physical review letters.

[15]  Changde Xie,et al.  Controlled dense coding for continuous variables using three-particle entangled states , 2002 .

[16]  Xiaolong Su,et al.  Experimental demonstration of unconditional entanglement swapping for continuous variables. , 2004, Physical review letters.

[17]  S. Braunstein,et al.  Quantum Information with Continuous Variables , 2004, quant-ph/0410100.

[18]  Ekert,et al.  "Event-ready-detectors" Bell experiment via entanglement swapping. , 1993, Physical review letters.

[19]  H. Weinfurter,et al.  Observation of three-photon Greenberger-Horne-Zeilinger entanglement , 1998, quant-ph/9810035.

[20]  Changde Xie,et al.  Experimental generation of bright two-mode quadrature squeezed light from a narrow-band nondegenerate optical parametric amplifier , 2000 .

[21]  S. Tan Confirming entanglement in continuous variable quantum teleportation , 1999 .

[22]  J. Roch,et al.  Generation and Detection of Infrared Single Photons and their Applications , 2006 .

[23]  H. Haus,et al.  Preparation, measurement and information capacity of optical quantum states , 1986 .

[24]  C. Caves,et al.  Quantum limits on bosonic communication rates , 1994 .

[25]  W. Bowen,et al.  Tripartite quantum state sharing. , 2003, Physical review letters.

[26]  Vaidman Teleportation of quantum states. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[27]  Raymond Laflamme,et al.  NMR Greenberger–Horne–Zeilinger states , 1998, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[28]  Reid,et al.  Quantum correlations of phase in nondegenerate parametric oscillation. , 1988, Physical review letters.

[29]  Reid,et al.  Demonstration of the Einstein-Podolsky-Rosen paradox using nondegenerate parametric amplification. , 1989, Physical review. A, General physics.

[30]  C. Xie,et al.  Entanglement swapping using nondegenerate optical parametric amplifier , 2002 .

[31]  S. Braunstein,et al.  Unconditional teleportation of continuous-variable entanglement , 1999, QELS 2000.

[32]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.

[33]  G. Guo,et al.  Controlled dense coding using the Greenberger-Horne-Zeilinger state , 2001 .

[34]  Ou,et al.  Realization of the Einstein-Podolsky-Rosen paradox for continuous variables. , 1992, Physical review letters.

[35]  H. Kimble,et al.  Teleportation of continuous quantum variables , 1998, Technical Digest. Summaries of Papers Presented at the International Quantum Electronics Conference. Conference Edition. 1998 Technical Digest Series, Vol.7 (IEEE Cat. No.98CH36236).

[36]  A. Furusawa,et al.  Demonstration of a quantum teleportation network for continuous variables , 2004, Nature.

[37]  H. J. Kimble,et al.  Quantum teleportation of light beams , 2003 .

[38]  Chiao Yao She,et al.  Quantum electrodynamics of a communication channel , 1968, IEEE Trans. Inf. Theory.

[39]  Kimble,et al.  Unconditional quantum teleportation , 1998, Science.

[40]  D. Bouwmeester,et al.  The Physics of Quantum Information , 2000 .

[41]  J. Gordon,et al.  Quantum Effects in Communications Systems , 1962, Proceedings of the IRE.