Magnetostructural coupling induced magnetocaloric effects in Ni–Mn-Ga-Fe microwires

[1]  Zhiyong Gao,et al.  Surface modifications and tailoring magnetism in Ni48·4Mn28.8Ga22.8 films by 120 keV proton irradiation , 2018, Intermetallics.

[2]  Jianfei Sun,et al.  Effect of Si doping on microstructure and martensite transformation in Ni-Mn-Sb ferromagnetic shape memory alloys , 2018, Intermetallics.

[3]  J. Beato-López,et al.  Giant direct and inverse magnetocaloric effect linked to the same forward martensitic transformation , 2017, Scientific Reports.

[4]  C. Esling,et al.  Large low-field magnetocaloric effect in a directionally solidified Ni50Mn18Cu7Cu25 alloy , 2017 .

[5]  Hongxian Shen,et al.  Improving mechanical and magnetocaloric responses of amorphous melt-extracted Gd-based microwires via nanocrystallization , 2017 .

[6]  Peter G. Martin,et al.  Microstructural evolution of Ni–Mn–Ga microwires during the melt-extraction process , 2016 .

[7]  F. Qin,et al.  Enhanced refrigerant capacity in Gd-Al-Co microwires with a biphase nanocrystalline/amorphous structure , 2016 .

[8]  Jianfei Sun,et al.  Magnetostructural coupling and magnetocaloric effect in Ni-Mn-Ga-Cu microwires , 2016 .

[9]  Jianfei Sun,et al.  Martensite transformation and superelasticity in polycrystalline Ni–Mn–Ga–Fe microwires prepared by melt-extraction technique , 2015 .

[10]  Jianfei Sun,et al.  Martensite transformation and magnetic properties of Ni50Mn25Ga25–xFex ferromagnetic microwires for application in microdevices , 2015 .

[11]  Jianfei Sun,et al.  Magnetocaloric effect (MCE) in melt-extracted Ni–Mn–Ga–Fe Heusler microwires , 2014 .

[12]  J. Dutkiewicz,et al.  Surface topography, microstructure and magnetic domains in Al for Sn substituted metamagnetic Ni–Mn–Sn Heusler alloy ribbons , 2014 .

[13]  Huan Wang,et al.  Shape memory effects of Ni49.7Mn25.0Ga19.8Fe5.5 microwires prepared by rapid solidification , 2014 .

[14]  Huan Wang,et al.  Enhanced magnetocaloric and mechanical properties of melt-extracted Gd55Al25Co20 micro-fibers , 2014 .

[15]  Sanjay Singh,et al.  Magnetic properties and magnetocaloric effect in Pt doped Ni-Mn-Ga , 2014 .

[16]  A. Yan,et al.  Microstructure and magnetocaloric properties of melt-extracted La-Fe-Si microwires , 2014 .

[17]  P. Han,et al.  Effect of Co addition on the martensitic transformation and magnetocaloric effect of Ni–Mn–Al ferromagnetic shape memory alloys , 2014 .

[18]  Xiaohong Xu,et al.  Tunable magnetic and transport properties of p-type ZnMnO films with n-type Ga, Cr, and Fe codopants , 2013 .

[19]  F. Hu,et al.  Magnetic entropy change involving martensitic transition in NiMn-based Heusler alloys , 2013 .

[20]  F. Qin,et al.  Mechanical and magnetocaloric properties of Gd-based amorphous microwires fabricated by melt-extraction , 2013 .

[21]  F. Qin,et al.  Excellent magnetocaloric properties of melt-extracted Gd-based amorphous microwires , 2012 .

[22]  D. Vuarnoz,et al.  Numerical analysis of a reciprocating active magnetic regenerator made of gadolinium wires , 2012 .

[23]  S. Giri,et al.  Field induced sign reversal of magnetocaloric effect in Gd2In , 2012 .

[24]  V. Zhukova,et al.  Magnetic and structural properties of Ni–Mn–Ga Heusler-type microwires , 2011 .

[25]  E. Brück,et al.  On the determination of the magnetic entropy change in materials with first-order transitions , 2009 .

[26]  M. Acet,et al.  Magnetocaloric effect and its relation to shape-memory properties in ferromagnetic Heusler alloys , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[27]  Z. Cao,et al.  Combined giant inverse and normal magnetocaloric effect for room-temperature magnetic cooling , 2007 .

[28]  M. Kuz’min Factors limiting the operation frequency of magnetic refrigerators , 2007 .

[29]  Seong-Cho Yu,et al.  Review of the magnetocaloric effect in manganite materials , 2007 .

[30]  Guangheng Wu,et al.  Negative and positive magnetocaloric effect in Ni Fe Mn Ga alloy , 2007 .

[31]  Gwyn P. Williams,et al.  Phase transitions and the magnetocaloric effect in Mn rich Ni–Mn–Ga Heusler alloys , 2006 .

[32]  Carlo Paolo Sasso,et al.  Magnetostructural transition and magnetocaloric effect in Ni55Mn20Ga25 single crystals , 2005 .

[33]  K. Ishida,et al.  Magnetic and martensitic transformations of NiMnX(X=In,Sn,Sb) ferromagnetic shape memory alloys , 2004 .

[34]  L. Mañosa,et al.  Multiscale origin of the magnetocaloric effect in Ni-Mn-Ga shape-memory alloys , 2003 .

[35]  K. Gschneidner,et al.  The giant magnetocaloric effect of optimally prepared Gd5Si2Ge2 , 2003 .

[36]  L. Mañosa,et al.  Magnetic field induced entropy change and magnetoelasticity in Ni-Mn-Ga alloys , 2002 .

[37]  F. Albertini,et al.  Giant entropy change at the co-occurrence of structural and magnetic transitions in the Ni Mn Ga Heusler alloy , 2002, cond-mat/0209564.

[38]  A. A. Likhachev,et al.  Giant magnetic-field-induced strain in NiMnGa seven-layered martensitic phase , 2002 .

[39]  F. Hu,et al.  Magnetic entropy change in Ni50.1Mn20.7Ga29.6 single crystal , 2001 .

[40]  F. Hu,et al.  Large magnetic entropy change in a Heusler alloy Ni 52.6 Mn 23.1 Ga 24.3 single crystal , 2001 .

[41]  P. J. Webster,et al.  Magnetic order and phase transformation in Ni2MnGa , 1984 .

[42]  Yan Feng,et al.  Microstructure, mechanical properties and shape memory effect of Ni–Mn–Ga–B high-temperature shape memory alloy , 2016 .