Modeling Blood Flow Through Intracranial Aneurysms: A Comparison of Newtonian and Non-Newtonian Viscosity

[1]  J. Xiang,et al.  High WSS or Low WSS? Complex Interactions of Hemodynamics with Intracranial Aneurysm Initiation, Growth, and Rupture: Toward a Unifying Hypothesis , 2014, American Journal of Neuroradiology.

[2]  Z. Sani,et al.  Effect of exercise on blood flow through the aortic valve: a combined clinical and numerical study , 2014, Computer methods in biomechanics and biomedical engineering.

[3]  N. Fatouraee,et al.  Combining numerical and clinical methods to assess aortic valve hemodynamics during exercise , 2014, Perfusion.

[4]  Daniel M Espino,et al.  Evaluation of a transient, simultaneous, arbitrary Lagrange–Euler based multi-physics method for simulating the mitral heart valve , 2014, Computer methods in biomechanics and biomedical engineering.

[5]  A. Khosravi,et al.  Estimation of maximum intraventricular pressure: a three-dimensional fluid–structure interaction model , 2013, Biomedical engineering online.

[6]  S. Svetina,et al.  Aggregation of red blood cells: From rouleaux to clot formation , 2013, 1310.1483.

[7]  Seongwon Kang,et al.  A fluid-structure interaction analysis on hemodynamics in carotid artery based on patient-specific clinical data , 2012, Journal of Mechanical Science and Technology.

[8]  B. Geurts,et al.  Simulation of Pulsatile Flow in Cerebral Aneurysms: From Medical Images to Flow and Forces , 2012 .

[9]  O. Bueno,et al.  Influence of blood viscosity to cerebral blood flow in older humans compared to young subjects , 2012, Clinical Neurophysiology.

[10]  M C M Rutten,et al.  Complex flow patterns in a real‐size intracranial aneurysm phantom: phase contrast MRI compared with particle image velocimetry and computational fluid dynamics , 2012, NMR in biomedicine.

[11]  E Shirani,et al.  Numerical simulation of blood pulsatile flow in a stenosed carotid artery using different rheological models. , 2011, Journal of biomechanics.

[12]  Chen-Hao Wang,et al.  A lattice Boltzmann approach for the non-Newtonian effect in the blood flow , 2011, Comput. Math. Appl..

[13]  Alison M. Forsyth,et al.  Multiscale approach to link red blood cell dynamics, shear viscosity, and ATP release , 2011, Proceedings of the National Academy of Sciences.

[14]  M W Collins,et al.  Non-Newtonian and flow pulsatility effects in simulation models of a stented intracranial aneurysm , 2011, Proceedings of the Institution of Mechanical Engineers. Part H, Journal of engineering in medicine.

[15]  Hervé Delingette,et al.  Subject-specific knee joint model: Design of an experiment to validate a multi-body finite element model , 2011, The Visual Computer.

[16]  J. Madsen,et al.  The pulsating brain: A review of experimental and clinical studies of intracranial pulsatility , 2011, Fluids and Barriers of the CNS.

[17]  Xu Bai-nan,et al.  Hemodynamics model of fluid–solid interaction in internal carotid artery aneurysms , 2010, Neurosurgical Review.

[18]  P. Cabrales,et al.  Effects of plasma viscosity modulation on cardiac function during moderate hemodilution , 2010, Asian journal of transfusion science.

[19]  Yuri Bazilevs,et al.  A fully-coupled fluid-structure interaction simulation of cerebral aneurysms , 2010 .

[20]  R. Glowinski,et al.  Numerical simulation of rheology of red blood cell rouleaux in microchannels. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[21]  N. Kojic,et al.  Computer Modeling in Bioengineering: Theoretical Background, Examples and Software , 2008 .

[22]  A. Valencia,et al.  Blood flow dynamics in patient-specific cerebral aneurysm models: the relationship between wall shear stress and aneurysm area index. , 2008, Medical engineering & physics.

[23]  J. Boyd,et al.  Comparison of Newtonian and non-Newtonian flows in a two-dimensional carotid artery model using the lattice Boltzmann method , 2007, Physics in medicine and biology.

[24]  I. Owen,et al.  Dynamic scaling of unsteady shear-thinning non-Newtonian fluid flows in a large-scale model of a distal anastomosis , 2007 .

[25]  Kazuo Tanishita,et al.  Fluid‐induced wall shear stress in anthropomorphic brain aneurysm models: MR phase‐contrast study at 3 T , 2007, Journal of magnetic resonance imaging : JMRI.

[26]  O. C. Zienkiewicz,et al.  The Finite Element Method for Fluid Dynamics , 2005 .

[27]  Shewaferaw S Shibeshi,et al.  The Rheology of Blood Flow in a Branched Arterial System , 2005, Applied rheology.

[28]  C. Kleinstreuer,et al.  Blood flow and structure interactions in a stented abdominal aortic aneurysm model. , 2005, Medical engineering & physics.

[29]  Marcel C M Rutten,et al.  The Influence of Flow, Vessel Diameter, and Non-Newtonian Blood Viscosity on the Wall Shear Stress in a Carotid Bifurcation Model for Unsteady Flow , 2005, Investigative radiology.

[30]  K. Katada,et al.  Magnitude and Role of Wall Shear Stress on Cerebral Aneurysm: Computational Fluid Dynamic Study of 20 Middle Cerebral Artery Aneurysms , 2004, Stroke.

[31]  K. Takayama,et al.  Computational replicas: anatomic reconstructions of cerebral vessels as volume numerical grids at three-dimensional angiography. , 2004, AJNR. American journal of neuroradiology.

[32]  Barbara M. Johnston,et al.  Non-Newtonian blood flow in human right coronary arteries: steady state simulations. , 2004, Journal of biomechanics.

[33]  M. Hussain,et al.  Relationship between power law coefficients and major blood constituents affecting the whole blood viscosity , 1999, Journal of Biosciences.

[34]  M. Gimbrone,et al.  Mechanical Forces and the Endothelium , 1999 .

[35]  F. N. van de Vosse,et al.  The influence of the non-Newtonian properties of blood on the flow in large arteries: steady flow in a carotid bifurcation model. , 1999, Journal of biomechanics.

[36]  J. Laragh,et al.  Elevated blood viscosity in patients with borderline essential hypertension. , 1983, Hypertension.

[37]  J. Stuart,et al.  Blood rheology. , 1980, Journal of clinical pathology.

[38]  G. Ferguson,et al.  The Hemodynamic Importance of the Geometry of Bifurcations in the Circle of Willis (Glass Model Studies) , 1972, Stroke.

[39]  S Chien,et al.  Blood Viscosity: Influence of Erythrocyte Aggregation , 1967, Science.

[40]  J. Ditzel,et al.  Blood-viscosity in diabetic patients. , 1966, Lancet.

[41]  E. Merrill,et al.  Influence of flow properties of blood upon viscosity-hematocrit relationships. , 1962, The Journal of clinical investigation.

[42]  Mark W. Siebert,et al.  Newtonian and Non-Newtonian Blood Flow over a Backward- Facing Step - A Case Study , 2009 .

[43]  G. Woodruff,et al.  BLOOD FLOW IN ARTERIES , 2009 .

[44]  J Chazal,et al.  [Unruptured intracranial aneurysm and microsurgical exclusion: the need of a randomized study of surgery versus natural history]. , 2008, Journal of neuroradiology. Journal de neuroradiologie.

[45]  D. Liepsch,et al.  Biofluid mechanics. , 1998, Biomedizinische Technik. Biomedical engineering.

[46]  I. G. Currie Fundamental mechanics of fluids , 1974 .