On a new class of elastic deformations not allowing for cavitation
暂无分享,去创建一个
Stefan Müller | Baisheng Yan | S. Müller | Baisheng Yan | Tang Qi | T. Qi
[1] P. G. Ciarlet,et al. Injectivity and self-contact in nonlinear elasticity , 1987 .
[2] J. Ball. Convexity conditions and existence theorems in nonlinear elasticity , 1976 .
[3] S. Müller. Higher integrability of determinants and weak convergence in L1. , 1990 .
[4] Yu. G. Reshetnyak. On the stability of conformal mappings in multidimensional spaces , 1967 .
[5] T. Iwaniec,et al. Analytical foundations of the theory of quasiconformal mappings in R^n , 1983 .
[6] V. Sverák. Regularity properties of deformations with finite energy , 1988 .
[7] T. Iwaniec,et al. On the integrability of the Jacobian under minimal hypotheses , 1992 .
[8] J. Ball. Global invertibility of Sobolev functions and the interpenetration of matter , 1981, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.
[9] Invertibility and a Topological Property of Sobolev Maps , 1996 .
[10] Stefan Müller,et al. A surprising higher integrability property of mappings with positive determinant , 1989 .
[11] S. Müller. On the singular support of the distributional determinant , 1993 .
[12] L. Evans. Measure theory and fine properties of functions , 1992 .
[13] Yu. G. Reshetnyak. Space mappings with bounded distortion , 1967 .
[14] Kewei Zhang,et al. Biting theorems for Jacobians and their applications , 1990 .
[15] J. Ball,et al. W1,p-quasiconvexity and variational problems for multiple integrals , 1984 .
[16] F. Browder. Nonlinear functional analysis , 1970 .
[17] J. Manfredi. Weakly monotone functions , 1994 .
[18] O. Martio,et al. Lusin's condition (N) and mappings of the class W1, n. , 1995 .
[19] V. Mizel,et al. Transformations by functions in Sobolev spaces and lower semicontinuity for parametric variational problems , 1973 .
[20] J. Ball,et al. Discontinuous equilibrium solutions and cavitation in nonlinear elasticity , 1982, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.
[21] R. Ogden. Large deformation isotropic elasticity – on the correlation of theory and experiment for incompressible rubberlike solids , 1972, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.
[22] Y. Meyer,et al. Compacité par compensation et espaces de Hardy , 1989 .
[23] C. B. Morrey. Multiple Integrals in the Calculus of Variations , 1966 .
[24] T. Qi. Almost-everywhere injectivity in nonlinear elasticity , 1988, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.
[25] T. Iwaniec,et al. New Inequalities for the Jacobian , 1994 .
[26] S. Muller. A OUNTEREXAMPLE CONCERNING FORMAL INTEGRATION BY PARTS , 1991 .
[27] P. Meyer. Probability and potentials , 1966 .
[28] H. Brezis,et al. Integrability for the Jacobian of orientation preserving mappings , 1993 .
[29] Leon Simon,et al. Lectures on Geometric Measure Theory , 1984 .
[30] E. Giusti. Minimal surfaces and functions of bounded variation , 1977 .
[31] S. Muêller. Det = det. A remark on the distributional determinant , 1990 .