On a new class of elastic deformations not allowing for cavitation

Abstract Let Ω ⊂ ℝ n be open and bounded and assume that u :Ω → ℝ n satisfies u ∈ W 1, p (Ω, ℝ n ), adj D u ∈ L q (Ω; ℝ n × n ) with p ≧ n − 1, q ≧ n n − 1 . We show that for g ∈ C 1 (ℝ n ; ℝ n ) with bounded gradient, one has the identity ∂ ∂ x j { ( g i ∘ u ) ( adj D u ) i j } = ( div g ) ∘ u det D u in the sense of distributions. As an application, we obtain existence results in nonlinear elasticity under weakened coercivity conditions. We also use the above identity to generalize Sverak’s ( cf . [Sv88]) regularity and invertibility results, replacing his hypothesis q ≧ p p − 1 by q ≧ n n − 1 . Finally if q = n n − 1 and if det D u ≧ 0 a.e., we show that det D u ln (2 + det D u ) is locally integrable.

[1]  P. G. Ciarlet,et al.  Injectivity and self-contact in nonlinear elasticity , 1987 .

[2]  J. Ball Convexity conditions and existence theorems in nonlinear elasticity , 1976 .

[3]  S. Müller Higher integrability of determinants and weak convergence in L1. , 1990 .

[4]  Yu. G. Reshetnyak On the stability of conformal mappings in multidimensional spaces , 1967 .

[5]  T. Iwaniec,et al.  Analytical foundations of the theory of quasiconformal mappings in R^n , 1983 .

[6]  V. Sverák Regularity properties of deformations with finite energy , 1988 .

[7]  T. Iwaniec,et al.  On the integrability of the Jacobian under minimal hypotheses , 1992 .

[8]  J. Ball Global invertibility of Sobolev functions and the interpenetration of matter , 1981, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[9]  Invertibility and a Topological Property of Sobolev Maps , 1996 .

[10]  Stefan Müller,et al.  A surprising higher integrability property of mappings with positive determinant , 1989 .

[11]  S. Müller On the singular support of the distributional determinant , 1993 .

[12]  L. Evans Measure theory and fine properties of functions , 1992 .

[13]  Yu. G. Reshetnyak Space mappings with bounded distortion , 1967 .

[14]  Kewei Zhang,et al.  Biting theorems for Jacobians and their applications , 1990 .

[15]  J. Ball,et al.  W1,p-quasiconvexity and variational problems for multiple integrals , 1984 .

[16]  F. Browder Nonlinear functional analysis , 1970 .

[17]  J. Manfredi Weakly monotone functions , 1994 .

[18]  O. Martio,et al.  Lusin's condition (N) and mappings of the class W1, n. , 1995 .

[19]  V. Mizel,et al.  Transformations by functions in Sobolev spaces and lower semicontinuity for parametric variational problems , 1973 .

[20]  J. Ball,et al.  Discontinuous equilibrium solutions and cavitation in nonlinear elasticity , 1982, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[21]  R. Ogden Large deformation isotropic elasticity – on the correlation of theory and experiment for incompressible rubberlike solids , 1972, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[22]  Y. Meyer,et al.  Compacité par compensation et espaces de Hardy , 1989 .

[23]  C. B. Morrey Multiple Integrals in the Calculus of Variations , 1966 .

[24]  T. Qi Almost-everywhere injectivity in nonlinear elasticity , 1988, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[25]  T. Iwaniec,et al.  New Inequalities for the Jacobian , 1994 .

[26]  S. Muller A OUNTEREXAMPLE CONCERNING FORMAL INTEGRATION BY PARTS , 1991 .

[27]  P. Meyer Probability and potentials , 1966 .

[28]  H. Brezis,et al.  Integrability for the Jacobian of orientation preserving mappings , 1993 .

[29]  Leon Simon,et al.  Lectures on Geometric Measure Theory , 1984 .

[30]  E. Giusti Minimal surfaces and functions of bounded variation , 1977 .

[31]  S. Muêller Det = det. A remark on the distributional determinant , 1990 .