Virtual elements for finite thermo-plasticity problems

[1]  Daniel Kienle,et al.  A finite-strain phase-field approach to ductile failure of frictional materials , 2019, International Journal of Solids and Structures.

[2]  George Z. Voyiadjis,et al.  Strain gradient continuum plasticity theories: Theoretical, numerical and experimental investigations , 2019, International Journal of Plasticity.

[3]  Peter Wriggers,et al.  A computational framework for brittle crack-propagation based on efficient virtual element method , 2019, Finite Elements in Analysis and Design.

[4]  Peter Wriggers,et al.  Phase-field modeling of brittle fracture using an efficient virtual element scheme , 2018, Computer Methods in Applied Mechanics and Engineering.

[5]  B. Reddy,et al.  A virtual element method for transversely isotropic elasticity , 2018, Computational Mechanics.

[6]  Peter Wriggers,et al.  A modified Gurson-type plasticity model at finite strains: formulation, numerical analysis and phase-field coupling , 2018 .

[7]  J. Z. Zhu,et al.  The finite element method , 1977 .

[8]  J. Mosler,et al.  Variational updates for thermomechanically coupled gradient-enhanced elastoplasticity — Implementation based on hyper-dual numbers , 2018, Computer Methods in Applied Mechanics and Engineering.

[9]  M. Dittmann,et al.  Variational modeling of thermomechanical fracture and anisotropic frictional mortar contact problems with adhesion , 2018, Computational Mechanics.

[10]  Peter Wriggers,et al.  A low order 3D virtual element formulation for finite elasto–plastic deformations , 2018, Computational Mechanics.

[11]  Peter Wriggers,et al.  Virtual element formulation for isotropic damage , 2018 .

[12]  Peter Wriggers,et al.  A low order 3D virtual element formulation for finite elasto–plastic deformations , 2017, Computational Mechanics.

[13]  Peter Wriggers,et al.  Efficient virtual element formulations for compressible and incompressible finite deformations , 2017 .

[14]  Fadi Aldakheel,et al.  Micromorphic approach for gradient-extended thermo-elastic–plastic solids in the logarithmic strain space , 2017 .

[15]  Glaucio H. Paulino,et al.  Some basic formulations of the virtual element method (VEM) for finite deformations , 2017 .

[16]  C. Miehe,et al.  Coupled thermomechanical response of gradient plasticity , 2017 .

[17]  E. Artioli,et al.  Arbitrary order 2D virtual elements for polygonal meshes: part II, inelastic problem , 2017, Computational Mechanics.

[18]  Peter Wriggers,et al.  A virtual element method for contact , 2016 .

[19]  Peter Wriggers,et al.  Automation of Finite Element Methods , 2016 .

[20]  S. Bargmann,et al.  Thermomechanical formulation of ductile damage coupled to nonlinear isotropic hardening and multiplicative viscoplasticity , 2016 .

[21]  J. Mosler,et al.  On the thermomechanical coupling in dissipative materials: A variational approach for generalized standard materials , 2015 .

[22]  J. M. Perlado,et al.  Unraveling the temperature dependence of the yield strength in single-crystal tungsten using atomistically-informed crystal plasticity calculations , 2015, 1506.02224.

[23]  Christian Miehe,et al.  Towards Phase Field Modeling of Ductile Fracture in Gradient‐Extended Elastic‐Plastic Solids , 2014 .

[24]  J. Korelc,et al.  Closed‐form matrix exponential and its application in finite‐strain plasticity , 2014 .

[25]  Arun L. Gain,et al.  On the Virtual Element Method for three-dimensional linear elasticity problems on arbitrary polyhedral meshes , 2013, 1311.0932.

[26]  C. Miehe,et al.  Mixed variational principles and robust finite element implementations of gradient plasticity at small strains , 2013 .

[27]  Lourenço Beirão da Veiga,et al.  Virtual Elements for Linear Elasticity Problems , 2013, SIAM J. Numer. Anal..

[28]  George Z. Voyiadjis,et al.  Thermo-mechanical strain gradient plasticity with energetic and dissipative length scales , 2012 .

[29]  S. Göktepe,et al.  Coupled thermoviscoplasticity of glassy polymers in the logarithmic strain space based on the free volume theory , 2011 .

[30]  J. Mosler,et al.  On the thermomechanical coupling in finite strain plasticity theory with non-linear kinematic hardening by means of incremental energy minimization , 2011 .

[31]  J. Driver,et al.  Temperature dependency of slip and twinning in plane strain compressed magnesium single crystals , 2011 .

[32]  Peter Wriggers,et al.  An improved EAS brick element for finite deformation , 2010 .

[33]  Laurent Stainier,et al.  Study and validation of a variational theory of thermo-mechanical coupling in finite visco-plasticity , 2010 .

[34]  Thomas J. R. Hughes,et al.  Isogeometric Analysis: Toward Integration of CAD and FEA , 2009 .

[35]  Shawn A. Chester,et al.  A thermo-mechanically coupled theory for large deformations of amorphous polymers. Part II: Applications , 2009 .

[36]  L. Anand,et al.  A thermo-mechanically coupled theory for large deformations of amorphous polymers. Part I: Formulation , 2009, International Journal of Plasticity.

[37]  M. Ortiz,et al.  A variational formulation of the coupled thermo-mechanical boundary-value problem for general dissipative solids , 2006 .

[38]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[39]  Magdalena Ortiz,et al.  A micromechanical model of hardening, rate sensitivity and thermal softening in BCC single crystals , 2001, cond-mat/0103284.

[40]  Alexander Lion,et al.  Constitutive modelling in finite thermoviscoplasticity: a physical approach based on nonlinear rheological models , 2000 .

[41]  Peter Wriggers,et al.  On enhanced strain methods for small and finite deformations of solids , 1996 .

[42]  Peter Wriggers,et al.  A note on enhanced strain methods for large deformations , 1996 .

[43]  J. C. Simo,et al.  Associated coupled thermoplasticity at finite strains: formulation, numerical analysis and implementation , 1992 .

[44]  Peter Wriggers,et al.  On the coupled thermomechanical treatment of necking problems via finite element methods , 1992 .

[45]  J. C. Simo,et al.  A framework for finite strain elastoplasticity based on maximum plastic dissipation and the multiplicative decomposition. part II: computational aspects , 1988 .

[46]  J. C. Simo,et al.  Variational and projection methods for the volume constraint in finite deformation elasto-plasticity , 1985 .

[47]  Paulo M. Pimenta,et al.  Thermomechanical response of solids at high strains—Natural approach , 1982 .

[48]  John Argyris,et al.  On the natural formulation and analysis of large deformation coupled thermomechanical problems , 1981 .

[49]  R. E. Jones,et al.  Nonlinear finite elements , 1978 .

[50]  Peter Wriggers,et al.  VIRTUAL ELEMENT FORMULATION FOR PHASE-FIELD MODELING OF DUCTILE FRACTURE , 2019, International Journal for Multiscale Computational Engineering.

[51]  Robert L. Taylor,et al.  VEM for Inelastic Solids , 2018 .

[52]  Peter Wriggers,et al.  Efficient Low Order Virtual Elements for Anisotropic Materials at Finite Strains , 2018 .

[53]  P. Wriggers,et al.  Finite and Virtual Element Formulations for Large Strain Anisotropic Material with Inextensive Fibers , 2018 .

[54]  Fadi Aldakheel,et al.  Mechanics of nonlocal dissipative solids: gradient plasticity and phase field modeling of ductile fracture , 2016 .

[55]  F. Welschinger,et al.  Variational gradient plasticity at finite strains. Part II: Local–global updates and mixed finite elements for additive plasticity in the logarithmic strain space , 2014 .

[56]  F. Brezzi,et al.  Basic principles of Virtual Element Methods , 2013 .

[57]  John A. Evans,et al.  Isogeometric Analysis , 2010 .