Accumulation and toxicity of metal oxide nanoparticles in a soft-sediment estuarine amphipod.

[1]  D. Raffaelli,et al.  Sediment toxicity testing: a bioassay approach using the amphipod Corophium volutator and the polychaete Arenicola marina , 1998 .

[2]  J. Jacobson Weight of the Evidence is the Right Approach , 1995 .

[3]  P. Zambonin,et al.  Analytical characterization of bioactive fluoropolymer ultra-thin coatings modified by copper nanoparticles , 2005, Analytical and bioanalytical chemistry.

[4]  P. Smith,et al.  Selection of foraging sites and invertebrate prey by migrant Semipalmated Sandpipers, Calidris pusilla (Pallas), in Minas Basin, Bay of Fundy , 1984 .

[5]  G. E. Gadd,et al.  Comparative toxicity of nanoparticulate ZnO, bulk ZnO, and ZnCl2 to a freshwater microalga (Pseudokirchneriella subcapitata): the importance of particle solubility. , 2007, Environmental science & technology.

[6]  J. Harrington,et al.  Herbivory and detritivory among gammaridean amphipods from a Florida seagrass community , 1979 .

[7]  R. Nisbet,et al.  Impact of Engineered Zinc Oxide Nanoparticles on the Individual Performance of Mytilus galloprovincialis , 2013, PloS one.

[8]  Samuel W. Bennett,et al.  Increased Mobility of Metal Oxide Nanoparticles Due to Photo and Thermal Induced Disagglomeration , 2012, PloS one.

[9]  Antonio Marcomini,et al.  Agglomeration and sedimentation of titanium dioxide nanoparticles (n-TiO2) in synthetic and real waters , 2013, Journal of Nanoparticle Research.

[10]  Nancy D Denslow,et al.  Exposure to copper nanoparticles causes gill injury and acute lethality in zebrafish (Danio rerio). , 2007, Environmental science & technology.

[11]  Lutz Mädler,et al.  High content screening in zebrafish speeds up hazard ranking of transition metal oxide nanoparticles. , 2011, ACS nano.

[12]  Redmond,et al.  Development of a chronic sediment toxicity test for marine benthic amphipods , 1992 .

[13]  B. Deng,et al.  Toxicity of silicon carbide nanowires to sediment‐dwelling invertebrates in water or sediment exposures , 2011, Environmental toxicology and chemistry.

[14]  K. Güven,et al.  Acute Lethal Toxicity and Accumulation of Copper in Gammarus pulex (L.) (Amphipoda) , 1999 .

[15]  Arturo A. Keller,et al.  TiO2 Nanoparticles Are Phototoxic to Marine Phytoplankton , 2012, PloS one.

[16]  J. Rozema,et al.  Antarctic biology in a global context , 2003 .

[17]  S. Luoma Can we determine the biological availability of sediment-bound trace elements? , 1989, Hydrobiologia.

[18]  Yeqing Sun,et al.  Biotoxicity of nickel oxide nanoparticles and bio-remediation by microalgae Chlorella vulgaris. , 2011, Chemosphere.

[19]  S. Lofland,et al.  Magnetic and electrochemical properties of nickel oxide nanoparticles obtained by the reverse-micellar route , 2006 .

[20]  Jamie R Lead,et al.  Nanomaterials in the environment: Behavior, fate, bioavailability, and effects , 2008, Environmental toxicology and chemistry.

[21]  K. Kasemets,et al.  Toxicity of nanoparticles of CuO, ZnO and TiO2 to microalgae Pseudokirchneriella subcapitata. , 2009, The Science of the total environment.

[22]  Arturo A. Keller,et al.  Global life cycle releases of engineered nanomaterials , 2013, Journal of Nanoparticle Research.

[23]  L. Crowder,et al.  Non‐Additive Impact of Blue Crabs and Spot on Their Prey Assemblages , 1989 .

[24]  J. Oliver,et al.  Gray whales and the structure of the Bering Sea benthos , 1983, Oecologia.

[25]  J. Lead,et al.  Sequestration of zinc from zinc oxide nanoparticles and life cycle effects in the sediment dweller amphipod Corophium volutator. , 2012, Environmental science & technology.

[26]  Hongtao Wang,et al.  Stability and aggregation of metal oxide nanoparticles in natural aqueous matrices. , 2010, Environmental science & technology.

[27]  C. King,et al.  Acute toxicity and bioaccumulation of aqueous and sediment‐bound metals in the estuarine amphipod Melita plumulosa , 2006, Environmental toxicology.

[28]  Yoram Cohen,et al.  The University of California Center for the Environmental Implications of Nanotechnology. , 2009, Environmental science & technology.

[29]  Claude Fortin,et al.  Effect of core-shell copper oxide nanoparticles on cell culture morphology and photosynthesis (photosystem II energy distribution) in the green alga, Chlamydomonas reinhardtii. , 2010, Aquatic toxicology.

[30]  C. Schlekat,et al.  Testing sediment toxicity in chesapeake bay with the amphipod Leptocheirus plumulosus: An evaluation , 1992 .

[31]  G. Krantzberg The Influence of Bioturbation on Physical, Chemical and Biological Parameters in Aquatic Environments: A Review , 1985 .

[32]  H. Lenihan,et al.  ANTHROPOGENIC AND NATURAL DISTURBANCES TO MARINE BENTHIC COMMUNITIES IN ANTARCTICA1 , 1995 .

[33]  Jung-Suk Lee,et al.  Importance of equilibration time in the partitioning and toxicity of zinc in spiked sediment bioassays , 2004, Environmental toxicology and chemistry.

[34]  S. Pokhrel,et al.  Metal oxide nanomaterials in seawater: linking physicochemical characteristics with biological response in sea urchin development. , 2011, Journal of hazardous materials.

[35]  C. Hickey,et al.  Sensitivities of Australian and New Zealand amphipods to copper and zinc in waters and metal-spiked sediments. , 2006, Chemosphere.

[36]  M. Ahsanullah Acute toxicity of chromium, mercury, molybdenum and nickel to the amphipod Allorchestes compressa , 1982 .

[37]  F. Perreault,et al.  Evaluation of Copper Oxide Nanoparticles Toxicity Using Chlorophyll a Fluorescence Imaging in Lemna gibba , 2010 .

[38]  Youn-Joo An,et al.  Microbial toxicity of metal oxide nanoparticles (CuO, NiO, ZnO, and Sb2O3) to Escherichia coli, Bacillus subtilis, and Streptococcus aureus. , 2011, The Science of the total environment.

[39]  E. Valsami-Jones,et al.  A mesocosm study of fate and effects of CuO nanoparticles on endobenthic species (Scrobicularia plana, Hediste diversicolor). , 2013, Environmental science & technology.

[40]  Michael Jonathan QinetiQ Limited Pitkethly,et al.  Nanomaterials – the driving force , 2004 .

[41]  P. Dauby,et al.  Amphipods as food sources for higher trophic levels in the Southern Ocean: a synthesis , 2001 .

[42]  Arturo A Keller,et al.  Uptake, accumulation, and biotransformation of metal oxide nanoparticles by a marine suspension-feeder. , 2012, Journal of hazardous materials.

[43]  B. Hargrave THE EFFECT OF A DEPOSIT‐FEEDING AMPHIPOD ON THE METABOLISM OF BENTHIC MICROFLORA1 , 1970 .

[44]  E. Valsami-Jones,et al.  Behavioural and biochemical responses of two marine invertebrates Scrobicularia plana and Hediste diversicolor to copper oxide nanoparticles. , 2011, Chemosphere.

[45]  J. Emmett Duffy,et al.  STRONG IMPACTS OF GRAZING AMPHIPODS ON THE ORGANIZATION OF A BENTHIC COMMUNITY , 2000 .

[46]  James F. Ranville,et al.  Bioavailability, toxicity, and bioaccumulation of quantum dot nanoparticles to the amphipod Leptocheirus plumulosus. , 2012, Environmental science & technology.

[47]  E. Caine Feeding mechanisms and possible resource partitioning of the caprellidae (Crustacea: Amphipoda) from Puget Sound, USA , 1977 .

[48]  G. Ankley,et al.  Acid volatile sulfide predicts the acute toxicity of cadmium and nickel in sediments , 1992 .

[49]  P. Rainbow Trace metal bioaccumulation: models, metabolic availability and toxicity. , 2007, Environment international.

[50]  Jung-Suk Lee,et al.  Influence of Acid Volatile Sulfides and Metal Concentrations on Metal Partitioning in Contaminated Sediments , 2000 .

[51]  J. Keithly,et al.  Acute and chronic toxicity of nickel to a cladoceran (Ceriodaphnia dubia) and an amphipod (Hyalella azteca) , 2004, Environmental toxicology and chemistry.

[52]  H. O N G T A O W A N G,et al.  Stability and Aggregation of Metal Oxide Nanoparticles in Natural Aqueous Matrices , 2010 .

[53]  L. Hansson,et al.  Food Chain Transport of Nanoparticles Affects Behaviour and Fat Metabolism in Fish , 2012, PloS one.

[54]  Lutz Mädler,et al.  Use of metal oxide nanoparticle band gap to develop a predictive paradigm for oxidative stress and acute pulmonary inflammation. , 2012, ACS nano.

[55]  Pedro J J Alvarez,et al.  Comparative eco-toxicity of nanoscale TiO2, SiO2, and ZnO water suspensions. , 2006, Water research.

[56]  A. Djurišić,et al.  Toxicities of nano zinc oxide to five marine organisms: influences of aggregate size and ion solubility , 2010, Analytical and bioanalytical chemistry.

[57]  Xiaoshan Zhu,et al.  Acute toxicities of six manufactured nanomaterial suspensions to Daphnia magna , 2009 .

[58]  Damià Barceló,et al.  Ecotoxicity and analysis of nanomaterials in the aquatic environment , 2009, Analytical and bioanalytical chemistry.

[59]  M. Thurston Scavenging abyssal amphipods from the North-East Atlantic ocean , 1979 .

[60]  J. Oliver,et al.  Phoxocephalid Amphipod Crustaceans as Predators on Larvae and Juveniles in Marine Soft-Bottom Communities , 1982 .

[61]  A. Decho,et al.  Bioavailability of particle‐associated silver, cadmium, and zinc to the estuarine amphipod Leptocheirus plumulosus through dietary ingestion , 2000 .

[62]  Pedro J. J. Alvarez,et al.  Nanomaterials in the construction industry: a review of their applications and environmental health and safety considerations. , 2010, ACS nano.

[63]  Arturo A Keller,et al.  Impacts of metal oxide nanoparticles on marine phytoplankton. , 2010, Environmental science & technology.