Shallow Semantic Parsing Based on FrameNet, VerbNet and PropBank

This article describes a semantic parser based on FrameNet semantic roles that uses a broad knowledge base created by interconnecting three major resources: FrameNet, VerbNet and PropBank. We link the above resources through a mapping between Intersective Levin classes, which are part of PropBank's annotation, and the FrameNet frames. By using Levin classes, we successfully detect FrameNet semantic roles without relying on the frame information. At the same time, the combined usage of the above resources increases the verb coverage and confers more robustness to our parser. The experiments with Support Vector Machines on automatic Levin class detection suggest that (a) tree kernels are well suited for the task and (b) Intersective Levin classes can be used to improve the accuracy of semantic parsing based on FrameNet roles.

[1]  Josef Ruppenhofer,et al.  FrameNet: Theory and Practice , 2003 .

[2]  Suzanne Stevenson,et al.  Automatic Verb Classification Using Distributions of Grammatical Features , 1999, EACL.

[3]  Alessandro Moschitti,et al.  A Study on Convolution Kernels for Shallow Statistic Parsing , 2004, ACL.

[4]  Bonnie J. Dorr,et al.  Role of Word Sense Disalnbiguation in Lexical Acquisition: Predicting Semantics from Syntactic Cues , 1996, COLING.

[5]  Mirella Lapata,et al.  Using Subcategorization to Resolve Verb Class Ambiguity , 1999, EMNLP.

[6]  Mirella Lapata,et al.  Verb Class Disambiguation Using Informative Priors , 2004, CL.

[7]  Beth Levin,et al.  English Verb Classes and Alternations: A Preliminary Investigation , 1993 .

[8]  Thorsten Joachims,et al.  Making large scale SVM learning practical , 1998 .

[9]  Tamar Frankel [The theory and the practice...]. , 2001, Tijdschrift voor diergeneeskunde.

[10]  Martha Palmer,et al.  Class-Based Construction of a Verb Lexicon , 2000, AAAI/IAAI.

[11]  Daniel Gildea,et al.  Automatic Labeling of Semantic Roles , 2000, ACL.

[12]  Bonnie J. Dorr,et al.  Large-Scale Dictionary Construction for Foreign Language Tutoring and Interlingual Machine Translation , 1998, Machine Translation.

[13]  Martha Palmer,et al.  Investigating Regular Sense Extensions Based on Intersective Levin Classes , 1998, COLING-ACL.

[14]  Martha Palmer,et al.  From TreeBank to PropBank , 2002, LREC.

[15]  Eugene Charniak,et al.  A Maximum-Entropy-Inspired Parser , 2000, ANLP.

[16]  Alessandro Moschitti,et al.  Semantic Role Labeling via FrameNet, VerbNet and PropBank , 2006, ACL.

[17]  Dirk Noël Beth Levin. English Verb Classes and Alternations: A Preliminary Investigation , 1995 .

[18]  MerloPaola,et al.  Automatic verb classification based on statistical distributions of argument structure , 2001 .

[19]  Sabine Schulte im Walde Clustering Verbs Semantically According to their Alternation Behaviour , 2000, COLING.

[20]  Daniel Jurafsky,et al.  Support Vector Learning for Semantic Argument Classification , 2005, Machine Learning.

[21]  Nianwen Xue,et al.  Calibrating Features for Semantic Role Labeling , 2004, EMNLP.

[22]  Suzanne Stevenson,et al.  Automatic Verb Classification Based on Statistical Distributions of Argument Structure , 2001, CL.

[23]  Ken Litkowski,et al.  Senseval-3 task: Automatic labeling of semantic roles , 2004, SENSEVAL@ACL.

[25]  Gina-Anne Levow,et al.  Construction of Chinese-English Semantic Hierarchy for Information Retrieval , 2000 .