Genome maintenance in the context of 4D chromatin condensation

[1]  J. Berger,et al.  The role of ATP-dependent machines in regulating genome topology. , 2016, Current opinion in structural biology.

[2]  Tamar Schlick,et al.  Hierarchical looping of zigzag nucleosome chains in metaphase chromosomes , 2016, Proceedings of the National Academy of Sciences.

[3]  Yuxin Yin,et al.  PTEN stabilizes TOP2A and regulates the DNA decatenation , 2015, Scientific Reports.

[4]  Y. Liu,et al.  Replication stress activates DNA repair synthesis in mitosis , 2015, Nature.

[5]  Chunaram Choudhary,et al.  Histone H1 couples initiation and amplification of ubiquitin signalling after DNA damage , 2015, Nature.

[6]  Yuxin Yin,et al.  PTEN Controls the DNA Replication Process through MCM2 in Response to Replicative Stress. , 2015, Cell reports.

[7]  J. Daban Stacked thin layers of metaphase chromatin explain the geometry of chromosome rearrangements and banding , 2015, Scientific Reports.

[8]  Yuxin Yin,et al.  PTEN regulates RPA1 and protects DNA replication forks , 2015, Cell Research.

[9]  Sigal Shachar,et al.  Identification of Gene Positioning Factors Using High-Throughput Imaging Mapping , 2015, Cell.

[10]  T. Hirano,et al.  Reconstitution of mitotic chromatids with a minimum set of purified factors , 2015, Nature Cell Biology.

[11]  Yuxin Yin,et al.  PTEN Regulates DNA Replication Progression and Stalled Fork Recovery , 2015, Nature Communications.

[12]  G. Längst,et al.  Chromatin Remodelers: From Function to Dysfunction , 2015, Genes.

[13]  M. Prentiss,et al.  Chromosomes Progress to Metaphase in Multiple Discrete Steps via Global Compaction/Expansion Cycles , 2015, Cell.

[14]  G. Mills,et al.  Nuclear PTEN tumor-suppressor functions through maintaining heterochromatin structure , 2015, Cell cycle.

[15]  D. Odom,et al.  Comparative Hi-C Reveals that CTCF Underlies Evolution of Chromosomal Domain Architecture , 2015, Cell reports.

[16]  Laura Buttitta,et al.  How the cell cycle impacts chromatin architecture and influences cell fate , 2015, Front. Genet..

[17]  A. Shilatifard,et al.  Chromatin signatures of cancer , 2015, Genes & development.

[18]  Neva C. Durand,et al.  A 3D Map of the Human Genome at Kilobase Resolution Reveals Principles of Chromatin Looping , 2014, Cell.

[19]  J. Whetstine,et al.  Examining the impact of gene variants on histone lysine methylation. , 2014, Biochimica et biophysica acta.

[20]  Job Dekker,et al.  Two ways to fold the genome during the cell cycle: insights obtained with chromosome conformation capture , 2014, Epigenetics & Chromatin.

[21]  Yang Shi,et al.  Diverse epigenetic mechanisms of human disease. , 2014, Annual review of genetics.

[22]  Yanli Wang,et al.  Topologically associating domains are stable units of replication-timing regulation , 2014, Nature.

[23]  P. Rogan,et al.  Localized, non-random differences in chromatin accessibility between homologous metaphase chromosomes , 2014, Molecular Cytogenetics.

[24]  Benjamin D. Rowland,et al.  Cohesin and its regulation: on the logic of X-shaped chromosomes. , 2014, Developmental cell.

[25]  G. Almouzni,et al.  Histone H3 variants and their chaperones during development and disease: contributing to epigenetic control. , 2014, Annual review of cell and developmental biology.

[26]  Jill M Dowen,et al.  Control of Cell Identity Genes Occurs in Insulated Neighborhoods in Mammalian Chromosomes , 2014, Cell.

[27]  Yuxin Yin,et al.  PTEN interacts with histone H1 and controls chromatin condensation. , 2014, Cell reports.

[28]  V. B. Teif,et al.  Affinity, stoichiometry and cooperativity of heterochromatin protein 1 (HP1) binding to nucleosomal arrays , 2014, Journal of physics. Condensed matter : an Institute of Physics journal.

[29]  M. Sung,et al.  A Macrohistone Variant Links Dynamic Chromatin Compaction to BRCA1-Dependent Genome Maintenance , 2014, Cell reports.

[30]  Kevan J. Salimian,et al.  The quantitative architecture of centromeric chromatin , 2014, eLife.

[31]  I. Cheeseman,et al.  Polo-like Kinase 1 Licenses CENP-A Deposition at Centromeres , 2014, Cell.

[32]  D. Durocher,et al.  Mitosis Inhibits DNA Double-Strand Break Repair to Guard Against Telomere Fusions , 2014, Science.

[33]  Amar Gajjar,et al.  The genomic landscape of diffuse intrinsic pontine glioma and pediatric non-brainstem high-grade glioma , 2014, Nature Genetics.

[34]  Tingting Gu,et al.  PTEN C-terminal deletion causes genomic instability and tumor development. , 2014, Cell reports.

[35]  V. Corces,et al.  CTCF: an architectural protein bridging genome topology and function , 2014, Nature Reviews Genetics.

[36]  W. Fischle,et al.  A Cascade of Histone Modifications Induces Chromatin Condensation in Mitosis , 2014, Science.

[37]  Jesse R. Dixon,et al.  Cohesin and CTCF differentially affect chromatin architecture and gene expression in human cells , 2013, Proceedings of the National Academy of Sciences.

[38]  G. Bosco,et al.  Condensins and 3D Organization of the Interphase Nucleus , 2013, Current Genetic Medicine Reports.

[39]  Job Dekker,et al.  Organization of the Mitotic Chromosome , 2013, Science.

[40]  A. Heijink,et al.  The DNA damage response during mitosis. , 2013, Mutation research.

[41]  Thomas Whitington,et al.  Transcription Factor Binding in Human Cells Occurs in Dense Clusters Formed around Cohesin Anchor Sites , 2013, Cell.

[42]  Ryosuke Ohsawa,et al.  At the intersection of non-coding transcription, DNA repair, chromatin structure, and cellular senescence , 2013, Front. Genet..

[43]  Jennifer S. Yu,et al.  Nuclear PTEN Controls DNA Repair and Sensitivity to Genotoxic Stress , 2013, Science.

[44]  Jennifer E. Phillips-Cremins,et al.  Architectural Protein Subclasses Shape 3D Organization of Genomes during Lineage Commitment , 2013, Cell.

[45]  R. Schneider,et al.  Scratching the (lateral) surface of chromatin regulation by histone modifications , 2013, Nature Structural &Molecular Biology.

[46]  L. Mirny,et al.  Exploring the three-dimensional organization of genomes: interpreting chromatin interaction data , 2013, Nature Reviews Genetics.

[47]  A. Rutkowska,et al.  Condensin: crafting the chromosome landscape , 2013, Chromosoma.

[48]  Diana B. Marina,et al.  A conformational switch in HP1 releases auto-inhibition to drive heterochromatin assembly , 2013, Nature.

[49]  D. Durocher,et al.  Regulation of DNA damage responses by ubiquitin and SUMO. , 2013, Molecular cell.

[50]  J. Dekker,et al.  The hierarchy of the 3D genome. , 2013, Molecular cell.

[51]  C. Millar Organizing the genome with H2A histone variants. , 2013, The Biochemical journal.

[52]  J. Whetstine,et al.  Histone lysine methylation dynamics: establishment, regulation, and biological impact. , 2012, Molecular cell.

[53]  Wouter de Laat,et al.  3C-based technologies to study the shape of the genome. , 2012, Methods.

[54]  John F. Marko,et al.  Self-organization of domain structures by DNA-loop-extruding enzymes , 2012, Nucleic acids research.

[55]  E. Schierenberg,et al.  The chromatin insulator CTCF and the emergence of metazoan diversity , 2012, Proceedings of the National Academy of Sciences.

[56]  T. Hirano Condensins: universal organizers of chromosomes with diverse functions. , 2012, Genes & development.

[57]  G. Banfalvi,et al.  Incomplete chromatin condensation in enlarged rat myelocytic leukemia cells. , 2012, DNA and cell biology.

[58]  Jesse R. Dixon,et al.  Topological Domains in Mammalian Genomes Identified by Analysis of Chromatin Interactions , 2012, Nature.

[59]  K. Desai,et al.  Genome-wide profiles of H2AX and γ-H2AX differentiate endogenous and exogenous DNA damage hotspots in human cells , 2012, Nucleic acids research.

[60]  Owen J. Marshall,et al.  Contrasting roles of condensin I and condensin II in mitotic chromosome formation , 2012, Journal of Cell Science.

[61]  L. Tran,et al.  Pten loss and RAS/MAPK activation cooperate to promote EMT and metastasis initiated from prostate cancer stem/progenitor cells. , 2012, Cancer research.

[62]  David T. W. Jones,et al.  Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioblastoma , 2012, Nature.

[63]  B. Schmidt,et al.  All tangled up: how cells direct, manage and exploit topoisomerase function , 2011, Nature Reviews Molecular Cell Biology.

[64]  K. Rippe,et al.  Targeting chromatin remodelers: signals and search mechanisms. , 2011, Biochimica et biophysica acta.

[65]  T. Hirano,et al.  Condensins I and II are essential for construction of bivalent chromosomes in mouse oocytes , 2011, Molecular Biology of the Cell.

[66]  M. J. Barrero,et al.  Histone H1 Variants Are Differentially Expressed and Incorporated into Chromatin during Differentiation and Reprogramming to Pluripotency* , 2011, The Journal of Biological Chemistry.

[67]  T. Hirano,et al.  The relative ratio of condensin I to II determines chromosome shapes. , 2011, Genes & development.

[68]  Nicholas J. Schork,et al.  CCCTC-binding factor (CTCF) and cohesin influence the genomic architecture of the Igh locus and antisense transcription in pro-B cells , 2011, Proceedings of the National Academy of Sciences.

[69]  Sarat Chandarlapaty,et al.  Reciprocal feedback regulation of PI3K and androgen receptor signaling in PTEN-deficient prostate cancer. , 2011, Cancer cell.

[70]  J. Cook,et al.  Nucleosomes in the neighborhood , 2011, Epigenetics.

[71]  G. Almouzni,et al.  HP1α recruitment to DNA damage by p150CAF-1 promotes homologous recombination repair , 2011, The Journal of cell biology.

[72]  J. Diffley,et al.  Positive Supercoiling of Mitotic DNA Drives Decatenation by Topoisomerase II in Eukaryotes , 2011, Science.

[73]  B. Price,et al.  Chromatin dynamics and the repair of DNA double strand breaks , 2011, Cell cycle.

[74]  H. Madhani,et al.  Chromodomain-mediated oligomerization of HP1 suggests a nucleosome-bridging mechanism for heterochromatin assembly. , 2011, Molecular cell.

[75]  P. Dorrestein,et al.  PHF8 Mediates Histone H4 Lysine 20 Demethylation Events Involved in Cell Cycle Progression , 2010, Nature.

[76]  Weihua Zeng,et al.  HP1: Heterochromatin binding proteins working the genome , 2010, Epigenetics.

[77]  Pierre-Étienne Jacques,et al.  Systematic identification of fragile sites via genome-wide location analysis of γ-H2AX , 2010, Nature Structural &Molecular Biology.

[78]  B. Panning,et al.  Condensin complexes regulate mitotic progression and interphase chromatin structure in embryonic stem cells , 2010, The Journal of cell biology.

[79]  Neerja Karnani,et al.  Genomic Study of Replication Initiation in Human Chromosomes Reveals the Influence of Transcription Regulation and Chromatin Structure on Origin Selection , 2010, Molecular biology of the cell.

[80]  R. Gordân,et al.  Drosophila ORC localizes to open chromatin and marks sites of cohesin complex loading. , 2010, Genome research.

[81]  Danny Reinberg,et al.  Histones: annotating chromatin. , 2009, Annual review of genetics.

[82]  I. Amit,et al.  Comprehensive mapping of long range interactions reveals folding principles of the human genome , 2011 .

[83]  A. Bracken,et al.  Transcriptomics: unravelling the biology of transcription factors and chromatin remodelers during development and differentiation. , 2009, Seminars in cell & developmental biology.

[84]  A. Astola,et al.  CENPA a Genomic Marker for Centromere Activity and Human Diseases , 2009, Current genomics.

[85]  J. Aten,et al.  Heterochromatin protein 1 is recruited to various types of DNA damage , 2009, The Journal of cell biology.

[86]  P. Fraser,et al.  Cohesins form chromosomal cis-interactions at the developmentally regulated IFNG locus , 2009, Nature.

[87]  J. Nitiss DNA topoisomerase II and its growing repertoire of biological functions , 2009, Nature Reviews Cancer.

[88]  P. R. Potts The Yin and Yang of the MMS21-SMC5/6 SUMO ligase complex in homologous recombination. , 2009, DNA repair.

[89]  L. Aragón,et al.  The unnamed complex: what do we know about Smc5-Smc6? , 2009, Chromosome Research.

[90]  J. Barbero Cohesins: chromatin architects in chromosome segregation, control of gene expression and much more , 2009, Cellular and Molecular Life Sciences.

[91]  D. Doenecke,et al.  Histone H1 and its isoforms: contribution to chromatin structure and function. , 2009, Gene.

[92]  S. Baker,et al.  PTEN and the PI3-kinase pathway in cancer. , 2009, Annual review of pathology.

[93]  L. Howe,et al.  Histone acetylation: truth of consequences? , 2009, Biochemistry and cell biology = Biochimie et biologie cellulaire.

[94]  Edward S. Miller,et al.  The RIDDLE Syndrome Protein Mediates a Ubiquitin-Dependent Signaling Cascade at Sites of DNA Damage , 2009, Cell.

[95]  J. Ellenberg,et al.  RNF168 Binds and Amplifies Ubiquitin Conjugates on Damaged Chromosomes to Allow Accumulation of Repair Proteins , 2009, Cell.

[96]  Jana Krejcí,et al.  Histone Modifications and Nuclear Architecture: A Review , 2008, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society.

[97]  H. Cedar,et al.  DNA replication timing of the human beta-globin domain is controlled by histone modification at the origin. , 2008, Genes & development.

[98]  J. Harbour,et al.  Integrative Genomic Analysis of Aneuploidy in Uveal Melanoma , 2008, Clinical Cancer Research.

[99]  Laurence Pelletier,et al.  Orchestration of the DNA-Damage Response by the RNF8 Ubiquitin Ligase , 2007, Science.

[100]  R. Schneider,et al.  Dynamics and interplay of nuclear architecture, genome organization, and gene expression. , 2007, Genes & development.

[101]  Michael B. Yaffe,et al.  RNF8 Transduces the DNA-Damage Signal via Histone Ubiquitylation and Checkpoint Protein Assembly , 2007, Cell.

[102]  Jiri Bartek,et al.  RNF8 Ubiquitylates Histones at DNA Double-Strand Breaks and Promotes Assembly of Repair Proteins , 2007, Cell.

[103]  D. Tremethick,et al.  The nucleosome surface regulates chromatin compaction and couples it with transcriptional repression , 2007, Nature Structural &Molecular Biology.

[104]  J. Hayes,et al.  Acetylation Mimics within Individual Core Histone Tail Domains Indicate Distinct Roles in Regulating the Stability of Higher-Order Chromatin Structure , 2007, Molecular and Cellular Biology.

[105]  L. Chin,et al.  Chromosomally unstable mouse tumours have genomic alterations similar to diverse human cancers , 2007, Nature.

[106]  Hong Wu,et al.  Identification of the JNK signaling pathway as a functional target of the tumor suppressor PTEN. , 2007, Cancer cell.

[107]  Michael Q. Zhang,et al.  Analysis of the Vertebrate Insulator Protein CTCF-Binding Sites in the Human Genome , 2007, Cell.

[108]  T. Kouzarides Chromatin Modifications and Their Function , 2007, Cell.

[109]  Bing Li,et al.  The Role of Chromatin during Transcription , 2007, Cell.

[110]  T. Hirano,et al.  Reconstitution and subunit geometry of human condensin complexes , 2007, The EMBO journal.

[111]  P. Pandolfi,et al.  Essential Role for Nuclear PTEN in Maintaining Chromosomal Integrity , 2007, Cell.

[112]  T. Hirano At the heart of the chromosome: SMC proteins in action , 2006, Nature Reviews Molecular Cell Biology.

[113]  Daniel J. Freeman,et al.  PTEN Deletion Leads to Up-regulation of a Secreted Growth Factor Pleiotrophin* , 2006, Journal of Biological Chemistry.

[114]  W. Earnshaw,et al.  Condensin I interacts with the PARP-1-XRCC1 complex and functions in DNA single-strand break repair. , 2006, Molecular cell.

[115]  M. Pazin,et al.  Histone H4-K16 Acetylation Controls Chromatin Structure and Protein Interactions , 2006, Science.

[116]  M. Osley,et al.  Chromatin remodelling at a DNA double-strand break site in Saccharomyces cerevisiae , 2005, Nature.

[117]  T. Hirano Condensins: Organizing and Segregating the Genome , 2005, Current Biology.

[118]  M. Fraga,et al.  Loss of acetylation at Lys16 and trimethylation at Lys20 of histone H4 is a common hallmark of human cancer , 2005, Nature Genetics.

[119]  T. Pandita,et al.  Lack of PTEN sequesters CHK1 and initiates genetic instability. , 2005, Cancer cell.

[120]  Sue Biggins,et al.  Histone variants: deviants? , 2005, Genes & development.

[121]  K. Shirahige,et al.  Postreplicative recruitment of cohesin to double-strand breaks is required for DNA repair. , 2004, Molecular cell.

[122]  Tom J. Petty,et al.  Methylated lysine 79 of histone H3 targets 53BP1 to DNA double-strand breaks , 2004, Nature.

[123]  Michel Nussenzweig,et al.  H2AX: the histone guardian of the genome. , 2004, DNA repair.

[124]  C. Peterson,et al.  Histones and histone modifications , 2004, Current Biology.

[125]  Victor G Corces,et al.  Phosphorylation of histone H3: a balancing act between chromosome condensation and transcriptional activation. , 2004, Trends in genetics : TIG.

[126]  A. F. Neuwald,et al.  Differential Contributions of Condensin I and Condensin II to Mitotic Chromosome Architecture in Vertebrate Cells , 2003, Cell.

[127]  T. Ried,et al.  H2AX Haploinsufficiency Modifies Genomic Stability and Tumor Susceptibility , 2003, Cell.

[128]  G. Charvin,et al.  Single-molecule study of DNA unlinking by eukaryotic and prokaryotic type-II topoisomerases , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[129]  U. K. Laemmli,et al.  A two-step scaffolding model for mitotic chromosome assembly. , 2003, Developmental cell.

[130]  S. Henikoff,et al.  Histone H3 variants specify modes of chromatin assembly , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[131]  T. Richmond,et al.  Solvent mediated interactions in the structure of the nucleosome core particle at 1.9 a resolution. , 2002, Journal of molecular biology.

[132]  S. Henikoff,et al.  The histone variant H3.3 marks active chromatin by replication-independent nucleosome assembly. , 2002, Molecular cell.

[133]  D. W. Abbott,et al.  The many tales of a tail: carboxyl-terminal tail heterogeneity specializes histone H2A variants for defined chromatin function. , 2002, Biochemistry.

[134]  Michel C. Nussenzweig,et al.  Genomic Instability in Mice Lacking Histone H2AX , 2002, Science.

[135]  E. Rogakou,et al.  Histone H2A variants H2AX and H2AZ. , 2002, Current opinion in genetics & development.

[136]  J. Dekker,et al.  Capturing Chromosome Conformation , 2002, Science.

[137]  Karl Mechtler,et al.  Loss of the Suv39h Histone Methyltransferases Impairs Mammalian Heterochromatin and Genome Stability , 2001, Cell.

[138]  C. Allis,et al.  Translating the Histone Code , 2001, Science.

[139]  J. Swedlow,et al.  Chromatin-associated Protein Phosphatase 1 Regulates Aurora-B and Histone H3 Phosphorylation* , 2001, The Journal of Biological Chemistry.

[140]  K. Nasmyth,et al.  Sister chromatid cohesion is required for postreplicative double-strand break repair in Saccharomyces cerevisiae , 2001, Current Biology.

[141]  T. Tsunoda,et al.  Growth and gene expression profile analyses of endometrial cancer cells expressing exogenous PTEN. , 2001, Cancer research.

[142]  N. Cozzarelli,et al.  Mechanism of topology simplification by type II DNA topoisomerases , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[143]  P. Becker,et al.  Activation of transcription through histone H4 acetylation by MOF, an acetyltransferase essential for dosage compensation in Drosophila. , 2000, Molecular cell.

[144]  C. Allis,et al.  The language of covalent histone modifications , 2000, Nature.

[145]  C. Pickart,et al.  Noncanonical MMS2-Encoded Ubiquitin-Conjugating Enzyme Functions in Assembly of Novel Polyubiquitin Chains for DNA Repair , 1999, Cell.

[146]  A. Wolffe,et al.  Structure and function of the core histone N-termini: more than meets the eye. , 1998, Biochemistry.

[147]  C. Allis,et al.  Mitosis-specific phosphorylation of histone H3 initiates primarily within pericentromeric heterochromatin during G2 and spreads in an ordered fashion coincident with mitotic chromosome condensation , 1997, Chromosoma.

[148]  V. Guacci,et al.  A Direct Link between Sister Chromatid Cohesion and Chromosome Condensation Revealed through the Analysis of MCD1 in S. cerevisiae , 1997, Cell.

[149]  K. Nasmyth,et al.  Cohesins: Chromosomal Proteins that Prevent Premature Separation of Sister Chromatids , 1997, Cell.

[150]  T. Richmond,et al.  Crystal structure of the nucleosome core particle at 2.8 Å resolution , 1997, Nature.

[151]  R. Kobayashi,et al.  Condensins, Chromosome Condensation Protein Complexes Containing XCAP-C, XCAP-E and a Xenopus Homolog of the Drosophila Barren Protein , 1997, Cell.

[152]  J. Wang,et al.  The probabilities of supercoil removal and decatenation by yeast DNA topoisomerase II , 1996, Genes to cells : devoted to molecular & cellular mechanisms.

[153]  K. Ozato,et al.  Displacement of sequence-specific transcription factors from mitotic chromatin , 1995, Cell.

[154]  D. J. Clarke,et al.  A topoisomerase II-dependent G2 cycle checkpoint in mammalian cells , 1994, Nature.

[155]  W. Earnshaw,et al.  ScII: an abundant chromosome scaffold protein is a member of a family of putative ATPases with an unusual predicted tertiary structure , 1994, The Journal of cell biology.

[156]  Victor V Lobanenkov,et al.  A novel sequence-specific DNA binding protein which interacts with three regularly spaced direct repeats of the CCCTC-motif in the 5'-flanking sequence of the chicken c-myc gene. , 1990, Oncogene.

[157]  R. Renkawitz,et al.  Modular structure of a chicken lysozyme silencer: Involvement of an unusual thyroid hormone receptor binding site , 1990, Cell.

[158]  D. Bazett-Jones,et al.  Histone hyperacetylation can induce unfolding of the nucleosome core particle. , 1990, Nucleic acids research.

[159]  T. James,et al.  Identification of a nonhistone chromosomal protein associated with heterochromatin in Drosophila melanogaster and its gene , 1986, Molecular and cellular biology.

[160]  U. K. Laemmli,et al.  Metaphase chromosome structure. Involvement of topoisomerase II. , 1986, Journal of molecular biology.

[161]  W. Earnshaw,et al.  Topoisomerase II is a structural component of mitotic chromosome scaffolds , 1985, The Journal of cell biology.

[162]  J. Wang,et al.  Yeast DNA topoisomerase II. An ATP-dependent type II topoisomerase that catalyzes the catenation, decatenation, unknotting, and relaxation of double-stranded DNA rings. , 1982, The Journal of biological chemistry.

[163]  C. D. Lewis,et al.  Higher order metaphase chromosome structure: Evidence for metalloprotein interactions , 1982, Cell.

[164]  D. Brutlag,et al.  ATP-dependent DNA topoisomerase from D. melanogaster reversibly catenates duplex DNA rings , 1980, Cell.

[165]  Chung-Cheng Liu,et al.  Type II DNA topoisomerases: Enzymes that can unknot a topologically knotted DNA molecule via a reversible double-strand break , 1980, Cell.

[166]  P. Brown,et al.  A sign inversion mechanism for enzymatic supercoiling of DNA. , 1979, Science.

[167]  U. K. Laemmli,et al.  Role of nonhistone proteins in metaphase chromosome structure , 1977, Cell.

[168]  J. R. Paulson,et al.  The structure of histone-depleted metaphase chromosomes , 1977, Cell.

[169]  M. Gellert,et al.  DNA gyrase: an enzyme that introduces superhelical turns into DNA. , 1976, Proceedings of the National Academy of Sciences of the United States of America.

[170]  P. Byvoet,et al.  The distribution and turnover of labeled methyl groups in histone fractions of cultured mammalian cells. , 1972, Archives of biochemistry and biophysics.

[171]  A. Mirsky,et al.  ACETYLATION AND METHYLATION OF HISTONES AND THEIR POSSIBLE ROLE IN THE REGULATION OF RNA SYNTHESIS. , 1964, Proceedings of the National Academy of Sciences of the United States of America.

[172]  Junjie Chen,et al.  Topoisomerase IIα controls the decatenation checkpoint , 2009, Nature Cell Biology.

[173]  T. Kundu,et al.  Histone variant nucleosomes: structure, function and implication in disease. , 2007, Sub-cellular biochemistry.

[174]  M. Esteller Aberrant DNA methylation as a cancer-inducing mechanism. , 2005, Annual review of pharmacology and toxicology.

[175]  C. Allis,et al.  Beyond the double helix: writing and reading the histone code. , 2004, Novartis Foundation symposium.

[176]  T. Jenuwein,et al.  Epigenetic regulation of telomere length in mammalian cells by the Suv39h1 and Suv39h2 histone methyltransferases , 2004, Nature Genetics.

[177]  K. Yokomori,et al.  The structural maintenance of chromosomes (SMC) family of proteins in mammals , 2004, Chromosome Research.

[178]  J. J. Chen,et al.  Profiling the downstream genes of tumor suppressor PTEN in lung cancer cells by complementary DNA microarray. , 2000, American journal of respiratory cell and molecular biology.

[179]  D. Koshland,et al.  Mitotic chromosome condensation. , 1996, Annual review of cell and developmental biology.

[180]  D. J. Clarke,et al.  A topoisomerase II-dependent G2 cycle checkpoint in mammalian cells , 1994, Nature.

[181]  M. Osley The regulation of histone synthesis in the cell cycle. , 1991, Annual review of biochemistry.

[182]  K MURRAY,et al.  THE OCCURRENCE OF EPSILON-N-METHYL LYSINE IN HISTONES. , 1964, Biochemistry.

[183]  K. Murray,et al.  The Occurrence of iε-N-Methyl Lysine in Histones , 1964 .