Direct Carbonation of Ca(OH)2 Using Liquid and Supercritical CO2: Implications for Carbon-Neutral Cementation

By invoking analogies to lime mortars of times past, this study examines the carbonation of portlandite (Ca(OH)2) by carbon dioxide (CO2) in the liquid and supercritical states as a potential route toward CO2-neutral cementation. Portlandite carbonation is noted to be rapid; e.g., >80% carbonation of Ca(OH)2 is achieved in 2 h upon contact with liquid CO2 at ambient temperatures, and it is only slightly sensitive to the effects of temperature, pressure, and the state of CO2 over the range of 6 MPa ≤ p ≤ 10 MPa and 8 °C ≤ T ≤ 42 °C. Additional studies suggest that the carbonation of anhydrous ordinary portland cement is slower and far less reliable than that of portlandite. Although cementation is not directly assessed, detailed scanning electron microscopy (SEM) examinations of carbonated microstructures indicate that the carbonation products formed encircle and embed sand grains similar to that observed in lime mortars. The outcomes suggest innovative directions for “carbon-neutral cementation.”

[1]  E. J. Anthony,et al.  Determination of intrinsic rate constants of the CaO–CO2 reaction , 2008 .

[2]  A. Putnis,et al.  Dissolution and carbonation of Portlandite [Ca(OH)2] single crystals. , 2013, Environmental science & technology.

[3]  G. Scherer,et al.  Degradation of oilwell cement due to exposure to carbonated brine , 2010 .

[4]  G. R. Heal,et al.  Solid–liquid diffusion controlled rate equations , 1999 .

[5]  G. Scherer,et al.  Carbonation of wellbore cement by CO2 diffusion from caprock , 2009 .

[6]  Michael N. Fardis,et al.  Experimental investigation and mathematical modeling of the concrete carbonation problem , 1991 .

[7]  W. Verstraete,et al.  Microbial carbonate precipitation in construction materials: A review , 2010 .

[8]  Jyh-Ping Lin,et al.  Kinetics of the Reaction of Ca(OH)2 with CO2 at Low Temperature , 1999 .

[9]  P. Brüner,et al.  Early Stage Hydration of Wollastonite: Kinetic Aspects of the Metal-Proton Exchange Reaction , 2015 .

[10]  D. Gemert,et al.  Phase and morphology evolution of calcium carbonate precipitated by carbonation of hydrated lime , 2012, Journal of Materials Science.

[11]  B. Lothenbach,et al.  Thermodynamic Modelling of the Effect of Temperature on the Hydration and Porosity of Portland Cement , 2008 .

[12]  J. C. Abanades,et al.  Conversion Limits in the Reaction of CO2 with Lime , 2003 .

[13]  François Renard,et al.  Gas-solid carbonation of Ca(OH)2 and CaO particles under non-isothermal and isothermal conditions by using a thermogravimetric analyzer: Implications for CO2 capture , 2012 .

[14]  R. Cuscó,et al.  Hydration and carbonation of monoclinic C2S and C3S studied by Raman spectroscopy , 2007 .

[15]  Jérôme Corvisier,et al.  Carbonation of Ca-bearing silicates, the case of wollastonite: Experimental investigations and kinetic modeling , 2009 .

[16]  D. Beruto,et al.  Liquid-like H2O adsorption layers to catalyze the Ca(OH)2/CO2 solid–gas reaction and to form a non-protective solid product layer at 20°C , 2000 .

[17]  Koenraad Van Balen,et al.  Modelling lime mortar carbonation , 1994 .

[18]  Sagrario Martínez-Ramírez,et al.  Influence of relative humidity on the carbonation of calcium hydroxide nanoparticles and the formation of calcium carbonate polymorphs , 2011 .

[19]  K. Squires,et al.  Carbon sequestration via aqueous olivine mineral carbonation: role of passivating layer formation. , 2006, Environmental science & technology.

[20]  C. Domingo,et al.  A breakthrough technique for the preparation of high-yield precipitated calcium carbonate , 2010 .

[21]  D. Bousfield,et al.  Formation of calcium carbonate particles by direct contact of Ca(OH)2 powders with supercritical CO2 , 2006 .

[22]  Dessy Ariyanti,et al.  Feasibility of Using Microalgae for Biocement Production through Biocementation , 2012 .

[23]  John P. Longwell,et al.  Product Layer Diffusion during the Reaction of Calcium Oxide with Carbon Dioxide , 1999 .

[24]  S. Abo-El-Enein,et al.  Application of microbial biocementation to improve the physico-mechanical properties of cement mortar , 2013 .

[25]  François Renard,et al.  Calcite precipitation from CO2-H2O-Ca(OH)2 slurry under high pressure of CO2 , 2007 .

[26]  D. L. Rayment,et al.  Examination of durable mortar from Hadrian's Wall , 1987 .

[27]  D. Moorehead Cementation by the carbonation of hydrated lime , 1986 .

[28]  A. Russell,et al.  Reaction kinetics of CO2 carbonation with Mg-rich minerals. , 2011, The journal of physical chemistry. A.

[29]  C. Andrade,et al.  New insights on the use of supercritical carbon dioxide for the accelerated carbonation of cement pastes , 2008 .

[30]  A. Steinfeld,et al.  Kinetic analysis of the carbonation reactions for the capture of CO2 from air via the Ca(OH)2–CaCO3–CaO solar thermochemical cycle , 2007 .

[31]  V. Lagneau,et al.  Experimental measurement of portlandite carbonation kinetics with supercritical CO2 , 2009 .

[32]  P. Fennell,et al.  Reactivation of CaO-Based Sorbents for CO2 Capture: Mechanism for the Carbonation of Ca(OH)2 , 2011 .

[33]  D. Northwood,et al.  Durability of concrete—accelerated carbonation and weathering studies , 1999 .

[34]  C. Domingo,et al.  Calcite precipitation by a high-pressure CO2 carbonation route , 2006 .

[35]  L. Favergeon,et al.  Understanding the Mechanisms of CaO Carbonation: Role of Point Defects in CaCO3 by Atomic-Scale Simulations , 2014 .

[36]  Wilhelm Jander,et al.  Reaktionen im festen Zustande bei höheren Temperaturen. Reaktionsgeschwindigkeiten endotherm verlaufender Umsetzungen , 1927 .

[37]  F. P. Glasser,et al.  Comparative studies of the carbonation of hydrated cements , 1989 .

[38]  Judith E. Terrill,et al.  New insights into the prehydration of cement and its mitigation , 2015 .

[39]  Wolfgang Wagner,et al.  International Equations for the Pressure Along the Melting and Along the Sublimation Curve of Ordinary Water Substance , 1994 .

[40]  Mickaël Thiery,et al.  Measurement methods of carbonation profiles in concrete: Thermogravimetry, chemical analysis and gammadensimetry , 2007 .

[41]  L. Price,et al.  CARBON DIOXIDE EMISSIONS FROM THE GLOBAL CEMENT INDUSTRY , 2001 .

[42]  Alexander Welle,et al.  Carbonation of wollastonite(001) competing hydration: microscopic insights from ion spectroscopy and density functional theory. , 2015, ACS applied materials & interfaces.

[43]  C. Andrade,et al.  Assessment of the protective effect of carbonation on portlandite crystals , 2015 .

[44]  Jan Elsen,et al.  Microscopy of historic mortars—a review , 2006 .

[45]  E. Sebastian,et al.  Forced and natural carbonation of lime-based mortars with and without additives: Mineralogical and textural changes , 2005 .

[46]  Thomas Wagner,et al.  GEM-Selektor geochemical modeling package: revised algorithm and GEMS3K numerical kernel for coupled simulation codes , 2012, Computational Geosciences.

[47]  Vasilije Manovic,et al.  Carbonation of CaO-Based Sorbents Enhanced by Steam Addition , 2010 .

[48]  B. Kutchko,et al.  Degradation of well cement by CO2 under geologic sequestration conditions. , 2007, Environmental science & technology.

[49]  John S Gierke,et al.  Carbon dioxide sequestration in cement kiln dust through mineral carbonation. , 2009, Environmental science & technology.

[50]  Yokozeki Kosuke,et al.  New Ecological Concrete that Reduces CO2 Emissions Below Zero Level ∼ New Method for CO2 Capture and Storage ∼☆ , 2013 .

[51]  Klaus S. Lackner,et al.  Carbon dioxide disposal in carbonate minerals , 1995 .

[52]  John Hughes,et al.  A Short History of the Use of Lime as a Building Material Beyond Europe and North America , 2012 .

[53]  L. Parrott,et al.  Carbonation in a 36 year old, in-situ concrete , 1989 .

[54]  J. Chu,et al.  Applications of microorganisms to geotechnical engineering for bioclogging and biocementation of soil in situ , 2008 .

[55]  L. Fernández-Carrasco,et al.  Supercritical carbonation of calcium aluminate cement , 2008 .

[56]  François Renard,et al.  In situ kinetic measurements of gas–solid carbonation of Ca(OH)2 by using an infrared microscope coupled to a reaction cell , 2010 .

[57]  W. Wakeham,et al.  The Viscosity of Carbon Dioxide , 1998 .

[58]  W. Wagner,et al.  A New Equation of State for Carbon Dioxide Covering the Fluid Region from the Triple‐Point Temperature to 1100 K at Pressures up to 800 MPa , 1996 .

[59]  Henk M. Jonkers,et al.  Self Healing Concrete: A Biological Approach , 2007 .

[60]  Chiara F. Ferraris,et al.  Measurement of Particle Size Distribution In Portland Cement Powder: Analysis of ASTM Round-Robin Studies , 2004 .