Compactness in Boltzmann’s equation via Fourier integral operators and applications. III

[1]  Richard O’Neil,et al.  Convolution operators and $L(p,q)$ spaces , 1963 .

[2]  R. H. Fowler The Mathematical Theory of Non-Uniform Gases , 1939, Nature.

[3]  L. Hörmander,et al.  The Analysis of Linear Partial Differential Operators IV , 1985 .

[4]  L. Arkeryd On the strong L1 trend to equilibrium for the Boltzmann equation , 1992 .

[5]  F. Golse,et al.  Fluid dynamic limits of kinetic equations. I. Formal derivations , 1991 .

[6]  Jean Leray,et al.  Étude de diverses équations intégrales non linéaires et de quelques problèmes que pose l'Hydrodynamique. , 1933 .

[7]  A. Majda,et al.  Oscillations and concentrations in weak solutions of the incompressible fluid equations , 1987 .

[8]  C. Cercignani A remarkable estimate for the solutions of the Boltzmann equation , 1992 .

[9]  B. Wennberg On an entropy dissipation inequality for the Boltzmann equation , 1992 .

[10]  J. Cooper SINGULAR INTEGRALS AND DIFFERENTIABILITY PROPERTIES OF FUNCTIONS , 1973 .

[11]  K. Pfaffelmoser,et al.  Global classical solutions of the Vlasov-Poisson system in three dimensions for general initial data , 1992 .

[12]  François Golse,et al.  Fluid dynamic limits of kinetic equations II convergence proofs for the boltzmann equation , 1993 .

[13]  Claude Bardos,et al.  Sur les limites asymptotiques de la théorie cinétique conduisant à la dynamique des fluides incompressibles , 1989 .

[14]  Jack Schaeffer,et al.  Global existence of smooth solutions to the vlasov poisson system in three dimensions , 1991 .

[15]  Luc Tartar,et al.  Compensated compactness and applications to partial differential equations , 1979 .