Adaptive Model Selection Procedure for Concurrent Multiscale Problems
暂无分享,去创建一个
Mark S. Shephard | Jacob Fish | R. Catalin Picu | Mohan A. Nuggehally | R. C. Picu | M. Shephard | J. Fish | M. Nuggehally
[1] James B. Adams,et al. Interatomic Potentials from First-Principles Calculations: The Force-Matching Method , 1993, cond-mat/9306054.
[2] Mark S. Shephard,et al. Concurrent AtC coupling based on a blend of the continuum stress and the atomistic force , 2007 .
[3] M. Musgrave,et al. Crystal Acoustics: Introduction to the Study of Elastic Waves and Vibrations in Crystals , 1970 .
[4] J. Tinsley Oden,et al. Modeling error and adaptivity in nonlinear continuum mechanics , 2001 .
[5] Amit Acharya,et al. Constitutive analysis of finite deformation field dislocation mechanics , 2004 .
[6] J. Z. Zhu,et al. The superconvergent patch recovery and a posteriori error estimates. Part 1: The recovery technique , 1992 .
[7] Amit Acharya,et al. A model of crystal plasticity based on the theory of continuously distributed dislocations , 2001 .
[8] J. Z. Zhu,et al. The superconvergent patch recovery and a posteriori error estimates. Part 2: Error estimates and adaptivity , 1992 .
[9] Gregory J. Wagner,et al. Coupling of atomistic and continuum simulations using a bridging scale decomposition , 2003 .
[10] Fredrik Larsson,et al. Modeling and discretization errors in hyperelasto-(visco-)plasticity with a view to hierarchical modeling , 2004 .
[11] J. Ericksen. The Cauchy and Born Hypotheses for Crystals. , 1983 .
[12] M. Baskes,et al. Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals , 1984 .
[13] Alexandre Ern,et al. A Posteriori Control of Modeling Errors and Discretization Errors , 2003, Multiscale Model. Simul..
[14] Fredrik Larsson,et al. Adaptive computational meso-macro-scale modeling of elastic composites , 2006 .
[15] J. Tinsley Oden,et al. MultiScale Modeling of Physical Phenomena: Adaptive Control of Models , 2006, SIAM J. Sci. Comput..
[16] D. Hull,et al. Introduction to Dislocations , 1968 .
[17] J. B. Adams,et al. Anisotropic surface segregation in AlMg alloys , 1997 .
[18] Amit Acharya,et al. A stress-gradient based criterion for dislocation nucleation in crystals , 2004 .
[19] Michael Ortiz,et al. Nanovoid cavitation by dislocation emission in aluminum. , 2004, Physical review letters.
[20] Rolf Rannacher,et al. An optimal control approach to a posteriori error estimation in finite element methods , 2001, Acta Numerica.
[21] Mark S. Shephard,et al. Composite Grid Atomistic Continuum Method: An Adaptive Approach to Bridge Continuum with Atomistic Analysis , 2004 .
[22] William A. Curtin,et al. A coupled atomistics and discrete dislocation plasticity simulation of nanoindentation into single crystal thin films , 2004 .
[23] J. Tinsley Oden,et al. Estimation of local modeling error and goal-oriented adaptive modeling of heterogeneous materials: I. Error estimates and adaptive algorithms , 2000 .
[24] S. Ohnimus,et al. Coupled model- and solution-adaptivity in the finite-element method , 1997 .
[25] A. Cemal Eringen,et al. Mechanics of continua , 1967 .
[26] S. Ohnimus,et al. Anisotropic discretization- and model-error estimation in solid mechanics by local Neumann problems , 1999 .
[27] J. Oden,et al. A Posteriori Error Estimation in Finite Element Analysis , 2000 .
[28] Paul T. Bauman,et al. On the extension of goal-oriented error estimation and hierarchical modeling to discrete lattice models , 2005 .
[29] J. Tinsley Oden,et al. Estimation of modeling error in computational mechanics , 2002 .
[30] Ronald E. Miller,et al. The Quasicontinuum Method: Overview, applications and current directions , 2002 .
[31] M. Ortiz,et al. Quasicontinuum analysis of defects in solids , 1996 .