Compositional heterogeneity of Archean mantle estimated from Sr and Nd isotopic systematics of basaltic rocks from North Pole, Australia, and the Isua supracrustal belt, Greenland

[1]  A. Chivas,et al.  Cross-examining Earth’s oldest stromatolites: Seeing through the effects of heterogeneous deformation, metamorphism and metasomatism affecting Isua (Greenland) ∼3700 Ma sedimentary rocks , 2019, Precambrian Research.

[2]  D. Garbe‐Schönberg,et al.  Deep hydrous mantle reservoir provides evidence for crustal recycling before 3.3 billion years ago , 2019, Nature.

[3]  J. Fitton,et al.  Eoarchaean tectonics: New constraints from high pressure-temperature experiments and mass balance modelling , 2019, Precambrian Research.

[4]  A. Lenardic,et al.  On the evolution of terrestrial planets: bi-stability, stochastic effects, and the non-uniqueness of tectonic states , 2018 .

[5]  M. Rosing,et al.  Elements of Eoarchean life trapped in mineral inclusions , 2017, Nature.

[6]  L. Reisberg,et al.  Chemical stratification in the post-magma ocean Earth inferred from coupled 146,147 Sm- 142,143 Nd systematics in ultramafic rocks of the Saglek block (3.25-3.9 Ga; northern Labrador, Canada) , 2017 .

[7]  N. Sleep,et al.  Plate-tectonic evolution of the Earth: bottom-up and top-down mantle circulation , 2016 .

[8]  A. Chivas,et al.  Rapid emergence of life shown by discovery of 3,700-million-year-old microbial structures , 2016, Nature.

[9]  T. Yokoyama,et al.  Chemical separation of Nd from geological samples for chronological studies using (146)Sm-(142)Nd and (147)Sm-(143)Nd systematics. , 2016, Analytica chimica acta.

[10]  H. Iwamori,et al.  Petrology and geochemistry of mafic rocks in the Acasta Gneiss Complex: Implications for the oldest mafic rocks and their origin , 2016 .

[11]  M. V. Kranendonk,et al.  Conditioned duality of the Earth system: Geochemical tracing of the supercontinent cycle through Earth history , 2016 .

[12]  A. Polat,et al.  A review of structural patterns and melting processes in the Archean craton of West Greenland: Evidence for crustal growth at convergent plate margins as opposed to non-uniformitarian models , 2015 .

[13]  S. Maruyama,et al.  Intermediate P/T-type regional metamorphism of the Isua Supracrustal Belt, southern west Greenland: The oldest Pacific-type orogenic belt? , 2015 .

[14]  H. Iwamori,et al.  Water circulation and global mantle dynamics: Insight from numerical modeling , 2015 .

[15]  H. Iwamori,et al.  Isotopic heterogeneity of oceanic, arc and continental basalts and its implications for mantle dynamics , 2015 .

[16]  J. Devidal,et al.  Redox control of the fractionation of niobium and tantalum during planetary accretion and core formation , 2014 .

[17]  H. Furnes,et al.  Four billion years of ophiolites reveal secular trends in oceanic crust formation , 2014 .

[18]  E. Nisbet,et al.  Insights into early Earth from the Pt–Re–Os isotope and highly siderophile element abundance systematics of Barberton komatiites , 2014 .

[19]  M. Rosing,et al.  Evidence for biogenic graphite in early Archaean Isua metasedimentary rocks , 2014 .

[20]  H. Iwamori,et al.  Generation of adakites in a cold subduction zone due to double subducting plates , 2012, Contributions to Mineralogy and Petrology.

[21]  J. Blichert‐Toft,et al.  The elusive Hadean enriched reservoir revealed by 142Nd deficits in Isua Archaean rocks , 2012, Nature.

[22]  Peter A. Cawood,et al.  A Change in the Geodynamics of Continental Growth 3 Billion Years Ago , 2012, Science.

[23]  T. Komiya Continental recycling and true continental growth , 2011 .

[24]  W. Manton,et al.  Neoproterozoic contaminated MORB of Wadi Ghadir ophiolite, NE Africa: Geochemical and Nd and Sr isotopic constraints , 2011 .

[25]  F. Albarède,et al.  Global structure of mantle isotopic heterogeneity and its implications for mantle differentiation and convection , 2010 .

[26]  W. Griffin,et al.  The growth of the continental crust: Constraints from zircon Hf-isotope data , 2010 .

[27]  Richard C. Aster,et al.  Episodic zircon age spectra of orogenic granitoids: The supercontinent connection and continental growth , 2010 .

[28]  M. V. Kranendonk,et al.  Influence of Hadean crust evident in basalts and cherts from the Pilbara Craton , 2010 .

[29]  M. Rosing,et al.  Isua supracrustal belt (Greenland)—A vestige of a 3.8 Ga suprasubduction zone ophiolite, and the implications for Archean geology , 2009 .

[30]  Yue-heng Yang,et al.  Precise determination of Sm, Nd concentrations and Nd isotopic compositions at the nanogram level in geological samples by thermal ionization mass spectrometry , 2009 .

[31]  A. Nutman,et al.  New 1:20,000 scale geological maps, synthesis and history of investigation of the Isua supracrustal belt and adjacent orthogneisses, southern West Greenland: a glimpse of Eoarchaean crust formation and orogeny , 2009 .

[32]  A. Nutman,et al.  Detrital zircon sedimentary provenance ages for the Eoarchaean Isua supracrustal belt southern West Greenland: Juxtaposition of an imbricated ca. 3700 Ma juvenile arc against an older complex with 3920–3760 Ma components , 2009 .

[33]  D. Upadhyay,et al.  142Nd evidence for an enriched Hadean reservoir in cratonic roots , 2009, Nature.

[34]  M. Norman,et al.  Evidence for subduction at 3.8 Ga: Geochemistry of arc-like metabasalts from the southern edge of the Isua Supracrustal Belt , 2009 .

[35]  A. Polat,et al.  Dacitic ocelli in mafic lavas, 3.8-3.7 Ga Isua greenstone belt, West Greenland: Geochemical evidence for partial melting of oceanic crust and magma mixing , 2009 .

[36]  Peter A. Cawood,et al.  A Matter of Preservation , 2009, Science.

[37]  F. Pirajno,et al.  Geological setting of Earth's oldest fossils in the ca. 3.5Ga Dresser Formation, Pilbara Craton, Western Australia , 2008 .

[38]  M. Whitehouse,et al.  A review of the isotopic and trace element evidence for mantle and crustal processes in the Hadean and Archean: Implications for the onset of plate tectonic subduction , 2008 .

[39]  F. Albarède,et al.  Decoupled isotopic record of ridge and subduction zone processes in oceanic basalts by independent component analysis , 2008 .

[40]  A. Nutman,et al.  ∼3,850 Ma tonalites in the Nuuk region, Greenland: geochemistry and their reworking within an Eoarchaean gneiss complex , 2007 .

[41]  R. Carlson,et al.  Chondrite Barium, Neodymium, and Samarium Isotopic Heterogeneity and Early Earth Differentiation , 2007, Science.

[42]  M. Rosing,et al.  A Vestige of Earth's Oldest Ophiolite , 2007, Science.

[43]  R. Huene,et al.  Crustal recycling at modern subduction zones applied to the past—Issues of growth and preservation of continental basement crust, mantle geochemistry, and supercontinent reconstruction , 2007 .

[44]  B. Kamber Chapter 2.4 The Enigma of the Terrestrial Protocrust: Evidence for Its Former Existence and the Importance of Its Complete Disappearance , 2007 .

[45]  A. Makishima,et al.  Determination of Major/ Minor and Trace Elements in Silicate Samples by ICP‐QMS and ICP‐SFMS Applying Isotope Dilution‐Internal Standardisation (ID‐IS) and Multi‐Stage Internal Standardisation , 2006 .

[46]  J. Mahoney,et al.  Flow and melting of a heterogeneous mantle: 2. Implications for a chemically nonlayered mantle , 2005 .

[47]  B. Windley,et al.  Major episodic increases of continental crustal growth determined from zircon ages of river sands; implications for mantle overturns in the Early Precambrian , 2004 .

[48]  T. Hirata,et al.  Geochemistry of the oldest MORB and OIB in the Isua Supracrustal Belt, southern West Greenland: Implications for the composition and temperature of early Archean upper mantle , 2004 .

[49]  M. Terabayashi,et al.  Archean ocean-floor metamorphism in the North Pole area, Pilbara Craton, Western Australia , 2003 .

[50]  A. Hofmann,et al.  Alteration and geochemical patterns in the 3.7–3.8 Ga Isua greenstone belt, West Greenland , 2003 .

[51]  B. Kamber,et al.  Geological and trace element evidence for a marine sedimentary environment of deposition and biogenicity of 3.45 Ga stromatolitic carbonates in the Pilbara Craton, and support for a reducing Archaean ocean , 2003 .

[52]  A. Hofmann,et al.  Contrasting geochemical patterns in the 3.7-3.8 Ga pillow basalt cores and rims, Isua greenstone belt, Southwest Greenland: implications for postmagmatic alteration processes , 2003 .

[53]  M. Whitehouse,et al.  Inheritance of early Archaean Pb-isotope variability from long-lived Hadean protocrust , 2003 .

[54]  T. Komiya Intermediate-P/T type Archean metamorphism of the Isua supracrustal belt: Implications for secular change of geothermal gradients at subduction zones and for Archean plate tectonics , 2002 .

[55]  T. Hirata,et al.  Petrology and Geochemistry of MORB and OIB in the Mid-Archean North Pole Region, Pilbara Craton, Western Australia: Implications for the Composition and Temperature of the Upper Mantle at 3.5 Ga , 2002 .

[56]  M. V. Kranendonk,et al.  Geology and Tectonic Evolution of the Archean North Pilbara Terrain,Pilbara Craton, Western Australia , 2002 .

[57]  H. Yurimoto,et al.  Ion microprobe analysis of graphite from ca. 3.8 Ga metasediments, Isua supracrustal belt, West Greenland: Relationship between metamorphism and carbon isotopic composition , 2002 .

[58]  A. Hofmann,et al.  Boninite-like volcanic rocks in the 3.7–3.8 Ga Isua greenstone belt, West Greenland: geochemical evidence for intra-oceanic subduction zone processes in the early Earth , 2002 .

[59]  H. Rollinson,et al.  Remnants of an Early Archaean (>3.75 Ga) sea-floor, hydrothermal system in the Isua Greenstone Belt , 2001 .

[60]  S. Utsunomiya,et al.  Seafloor hydrothermal alteration at an Archaean mid‐ocean ridge , 2001 .

[61]  J. Myers Protoliths of the 3.8-3.7 Ga Isua greenstone belt, West Greenland , 2001 .

[62]  B. Wood,et al.  The Earth's ‘missing’ niobium may be in the core , 2001, Nature.

[63]  Yasuo Nakamura,et al.  Archean Regional Metamorphism of the Isua Supracrustal Belt, Southern West Greenland: Implications for a Driving Force for Archean Plate Tectonics , 2000 .

[64]  Michael G. Green,et al.  Growth and recycling of early Archaean continental crust: geochemical evidence from the Coonterunah and Warrawoona Groups, Pilbara Craton, Australia , 2000 .

[65]  M. Kawamura,et al.  Accretion and tectonic erosion processes revealed by the mode of occurrence and geochemistry of greenstones in the Cretaceous accretionary complexes of the Idonnappu Zone, southern central Hokkaido, Japan , 2000 .

[66]  F. Albarède,et al.  The Nd and Hf isotopic evolution of the mantle through the Archean. results from the Isua supracrustals, West Greenland, and from the Birimian terranes of West Africa , 1999 .

[67]  N. Arndt,et al.  Hf isotope compositions of komatiites , 1999 .

[68]  T. Masuda,et al.  Plate Tectonics at 3.8–3.7 Ga: Field Evidence from the Isua Accretionary Complex, Southern West Greenland , 1999, The Journal of Geology.

[69]  A. Makishima,et al.  EVALUATION OF THE COPRECIPITATION OF INCOMPATIBLE TRACE ELEMENTS WITH FLUORIDE DURING SILICATE ROCK DISSOLUTION BY ACID DIGESTION , 1999 .

[70]  M. Rosing,et al.  13C-Depleted carbon microparticles in >3700-Ma sea-floor sedimentary rocks from west greenland , 1999, Science.

[71]  K. Condie EPISODIC CONTINENTAL GROWTH AND SUPERCONTINENTS : A MANTLE AVALANCHE CONNECTION? , 1998 .

[72]  W. Nijman,et al.  Growth fault control of Early Archaean cherts, barite mounds and chert-barite veins, North Pole Dome, Eastern Pilbara, Western Australia , 1998 .

[73]  P. D. P. Taylor,et al.  Isotopic compositions of the elements 1997 (Technical Report) , 1998 .

[74]  M. Rosing,et al.  ̃ 3710 and ⪖ 3790 Ma volcanic sequences in the Isua (Greenland) supracrustal belt; structural and Nd isotope implications , 1997 .

[75]  A. Hofmann,et al.  Recycled ocean crust and sediment in Indian Ocean MORB , 1997 .

[76]  Y. Watanabe,et al.  Field occurrence, geochemistry and petrogenesis of the Archean Mid-Oceanic Ridge Basalts (AMORBs) of the Cleaverville area, Pilbara Craton, Western Australia , 1996 .

[77]  G. Gehrels,et al.  Constraints on early Earth differentiation from hafnium and neodymium isotopes , 1996, Nature.

[78]  A. H. Wapstra,et al.  The 1995 update to the atomic mass evaluation , 1995 .

[79]  S. Bowring,et al.  The Earth's early evolution. , 1995, Science.

[80]  K. Condie Episodic ages of Greenstones: A key to mantle dynamics? , 1995 .

[81]  R. Carlson,et al.  ReOs, SmNd, and RbSr isotope evidence for thick Archaean lithospheric mantle beneath the Siberian craton modified by multistage metasomatism , 1995 .

[82]  N. Imai,et al.  1994 compilation values for GSJ reference samples, “Igneous rock series” , 1995 .

[83]  V. Bennett,et al.  Progressive growth of the Earth's continental crust and depleted mantle: Geochemical constraints , 1994 .

[84]  Shijie Zhong,et al.  Role of plates and temperature‐dependent viscosity in phase change dynamics , 1994 .

[85]  M. Okamura,et al.  Plumes in central Panthalassa? Deductions from accreted oceanic fragments in Japan , 1994 .

[86]  M. McCulloch Primitive 87Sr86Sr from an Archean barite and conjecture on the Earth's age and origin , 1994 .

[87]  W. Peltier,et al.  Avalanche effects in phase transition modulated thermal convection: A model of Earth's mantle , 1994 .

[88]  A. H. Wapstra,et al.  The 1993 atomic mass evaluation: (I) Atomic mass table , 1993 .

[89]  V. Bennett,et al.  Evolution of the early Earth: Constraints from 143Nd142Nd isotopic systematics , 1993 .

[90]  A. Nutman,et al.  Nd isotopic evidence for transient, highly depleted mantle reservoirs in the early history of the Earth , 1993 .

[91]  N. McNaughton,et al.  Constraints on the age of the Warrawoona Group, eastern Pilbara Block, Western Australia , 1993 .

[92]  D. Davis,et al.  UPb zircon geochronology of Archaean felsic units in the Marble Bar region, Pilbara Craton, Western Australia , 1992 .

[93]  R. Armstrong The persistent myth of crustal growth , 1991 .

[94]  D. McKenzie,et al.  Melt Generation by Plumes: A Study of Hawaiian Volcanism , 1991 .

[95]  Y. Isozaki,et al.  Well‐documented travel history of Mesozoic pelagic chert in Japan: From remote ocean to subduction zone , 1991 .

[96]  L. Campbell,et al.  Evidence for extreme mantle fractionation in early Archaean ultramafic rocks from northern Labrador , 1991, Nature.

[97]  E. Takahashi Speculations on the Archean mantle: Missing link between komatiite and depleted garnet peridotite , 1990 .

[98]  F. Furuoka,et al.  Accreted oceanic materials in Japan , 1990 .

[99]  C. Isachsen,et al.  Neodymium and lead isotope evidence for enriched early Archaean crust in North America , 1989, Nature.

[100]  J. Mahoney,et al.  Isotopic and geochemical provinces of the western Indian Ocean Spreading Centers , 1989 .

[101]  I. Campbell,et al.  A two-stage model for the formation of the granite-greenstone terrains of the Kalgoorlie-Norseman area, Western Australia , 1988 .

[102]  M. Bickle,et al.  The Volume and Composition of Melt Generated by Extension of the Lithosphere , 1988 .

[103]  A. E. Ringwood,et al.  Experimental determination of element partitioning between silicate perovskites, garnets and liquids: constraints on early differentiation of the mantle , 1988 .

[104]  G. Gruau,et al.  Age of the Archean Talga-Talga Subgroup, Pilbara Block, Western Australia, and early evolution of the mantle: new SmNd isotopic evidence , 1987 .

[105]  J. Blenkinsop,et al.  Archean depleted mantle: Evidence from Nd and Sr initial isotopic ratios of carbonatites , 1987 .

[106]  G. Hanson,et al.  Mantle heterogeneity and crustal recycling in Archean granite-greenstone belts: Evidence from Nd isotopes and trace elements in the Rainy Lake area, Superior Province, Ontario, Canada , 1986 .

[107]  S. Hart,et al.  Determination of initial 87Sr86Sr and 143Nd144Nd in primary minerals from mafic and ultramafic rocks: Experimental procedure and implications for the isotopic characteristics of the Archean mantle under the Abitibi greenstone belt, Canada , 1986 .

[108]  B. Hamelin,et al.  PbSrNd isotopic data of Indian Ocean ridges: new evidence of large-scale mapping of mantle heterogeneities , 1986 .

[109]  G. Jenner,et al.  The Sm-Nd age of Kambalda volcanics is 500 Ma too old! , 1985 .

[110]  S. Taylor,et al.  The continental crust: Its composition and evolution , 1985 .

[111]  A. Kröner,et al.  Multi-chronometric ages and origin of Archaean tonalitic gneisses in Finnish Lapland: A case for long crustal residence time , 1984 .

[112]  J. L. Baxter,et al.  SmNd geochronology of greenstone belts in the Yilgarn Block, Western Australia , 1984 .

[113]  A. Hofmann,et al.  Age and isotope geochemistry of the Archaean Pongola and Usushwana suites in Swaziland, southern Africa: a case for crustal contamination of mantle-derived magma , 1984 .

[114]  J. Gill SrPbNd isotopic evidence that both MORB and OIB sources contribute to oceanic island arc magmas in Fiji , 1984 .

[115]  H. Huppert,et al.  Emplacement and cooling of komatiite lavas , 1984, Nature.

[116]  B. Jahn,et al.  Archean granulite gneisses from eastern Hebei Province, China: rare earth geochemistry and tectonic implications , 1984 .

[117]  M. Thirlwall,et al.  Revised Sm–Nd systematics of Kambalda greenstones, Western Australia , 1984, Nature.

[118]  M. McCulloch,et al.  Nd and Sr isotopic crustal contamination patterns in an Archaean meta-basic dyke from northern Labrador , 1984 .

[119]  S. Goldstein,et al.  Nd and Sr isotopic study of a mafic layer from Ronda ultramafic complex , 1983, Nature.

[120]  P. Hamilton,et al.  Sm-Nd studies of Archaean metasediments and metavolcanics from West Greenland and their implications for the Earth's early history , 1983 .

[121]  A. Hickman Geology of the Pilbara Block and its environs , 1983 .

[122]  G. Gruau,et al.  Komatiites of the Onverwacht Group, S. Africa: REE geochemistry, Sm/Nd age and mantle evolution , 1982 .

[123]  A. Hofmann,et al.  Sr and Nd isotope geochemistry of oceanic basalts and mantle evolution , 1982, Nature.

[124]  Albrecht W. Hofmann,et al.  Mantle plumes from ancient oceanic crust , 1982 .

[125]  S. Hart,et al.  The Shabogamo Intrusive Suite, Labrador: Sr and Nd isotopic evidence for contaminated mafic magmas in the Proterozoic , 1981 .

[126]  S. Jacobsen,et al.  The Mean Age of Mantle and Crustal Reservoirs for the Planet Mars , 1979 .

[127]  S. Hart,et al.  Nd and Sr isotope ratios and rare earth element abundances in Reykjanes Peninsula basalts evidence for mantle heterogeneity beneath Iceland , 1979 .

[128]  M. Schidlowski,et al.  Carbon isotope geochemistry of the 3.7 × 109-yr-old Isua sediments, West Greenland: implications for the Archaean carbon and oxygen cycles , 1979 .

[129]  P. Hamilton,et al.  Sm—Nd systematics of Lewisian gneisses: implications for the origin of granulites , 1979, Nature.

[130]  P. Hamilton,et al.  Sm-Nd dating of Archaean basic and ultrabasic volcanics , 1977 .

[131]  S. Hart,et al.  The geochemistry and evolution of early precambrian mantle , 1977 .

[132]  G. Wasserburg,et al.  Inferences about magma sources and mantle structure from variations of ^(143)Nd/^(144)Nd , 1976 .

[133]  G. Wasserburg,et al.  Nd isotopic variations and petrogenetic models , 1976 .

[134]  R. C. Weast CRC Handbook of Chemistry and Physics , 1973 .

[135]  W. J. Morgan,et al.  Convection Plumes in the Lower Mantle , 1971, Nature.

[136]  P. Hurley,et al.  Pre-drift continental nuclei. , 1969, Science.