Endophilin-A coordinates priming and fusion of neurosecretory vesicles via intersectin

[1]  M. Verhage,et al.  MUNC18-1 regulates the submembrane F-actin network, independently of syntaxin1 targeting, via hydrophobicity in β-sheet 10 , 2019, Journal of Cell Science.

[2]  Y. Humeau,et al.  A proline-rich motif on VGLUT1 reduces synaptic vesicle super-pool and spontaneous release frequency , 2019, eLife.

[3]  Shigeki Watanabe,et al.  The Synaptic Vesicle Cycle Revisited: New Insights into the Modes and Mechanisms , 2019, The Journal of Neuroscience.

[4]  T. Moser,et al.  Endophilin‐A regulates presynaptic Ca2+ influx and synaptic vesicle recycling in auditory hair cells , 2019, The EMBO journal.

[5]  Yongli Zhang Faculty Opinions recommendation of Visualization of Membrane Pore in Live Cells Reveals a Dynamic-Pore Theory Governing Fusion and Endocytosis. , 2018, Faculty Opinions – Post-Publication Peer Review of the Biomedical Literature.

[6]  Christian Rosenmund,et al.  Synaptojanin and Endophilin Mediate Neck Formation during Ultrafast Endocytosis , 2018, Neuron.

[7]  Huisheng Liu,et al.  Visualization of Membrane Pore in Live Cells Reveals a Dynamic-Pore Theory Governing Fusion and Endocytosis , 2018, Cell.

[8]  R. Jahn,et al.  Clathrin coat controls synaptic vesicle acidification by blocking vacuolar ATPase activity , 2018, eLife.

[9]  Ira Milosevic Revisiting the Role of Clathrin-Mediated Endoytosis in Synaptic Vesicle Recycling , 2018, Front. Cell. Neurosci..

[10]  Emmanuel Boucrot,et al.  Mechanisms of Carrier Formation during Clathrin-Independent Endocytosis. , 2017, Trends in cell biology.

[11]  T. Maritzen,et al.  Coupling of exocytosis and endocytosis at the presynaptic active zone , 2017, Neuroscience Research.

[12]  O. Shupliakov,et al.  Intersectin associates with synapsin and regulates its nanoscale localization and function , 2017, Proceedings of the National Academy of Sciences.

[13]  E. Neher Neurosecretion: what can we learn from chromaffin cells , 2017, Pflügers Archiv - European Journal of Physiology.

[14]  Paul M. Jenkins,et al.  Synaptotagmin isoforms confer distinct activation kinetics and dynamics to chromaffin cell granules , 2017, The Journal of general physiology.

[15]  G. Voth,et al.  Friction Mediates Scission of Tubular Membranes Scaffolded by BAR Proteins , 2017, Cell.

[16]  P. Bénit,et al.  Acute and chronic mitochondrial respiratory chain deficiency differentially regulate lysosomal biogenesis , 2017, Scientific Reports.

[17]  P. Verstreken,et al.  Endophilin-A Deficiency Induces the Foxo3a-Fbxo32 Network in the Brain and Causes Dysregulation of Autophagy and the Ubiquitin-Proteasome System , 2016, Cell reports.

[18]  E. Neher,et al.  Actin- and Myosin-Dependent Vesicle Loading of Presynaptic Docking Sites Prior to Exocytosis , 2016, Neuron.

[19]  S. Rizzoli,et al.  The Membrane Marker mCLING Reveals the Molecular Composition of Trafficking Organelles , 2016, Current protocols in neuroscience.

[20]  Alexander M. Walter,et al.  Identification of a Munc13-sensitive step in chromaffin cell large dense-core vesicle exocytosis , 2015, eLife.

[21]  M. Verhage,et al.  A Post-Docking Role of Synaptotagmin 1-C2B Domain Bottom Residues R398/399 in Mouse Chromaffin Cells , 2015, The Journal of Neuroscience.

[22]  O. Shupliakov,et al.  Vesicle uncoating regulated by SH3-SH3 domain-mediated complex formation between endophilin and intersectin at synapses , 2014, EMBO reports.

[23]  L. Johannes,et al.  Endophilin-A2 functions in membrane scission in clathrin-independent endocytosis , 2014, Nature.

[24]  N. Sauvonnet,et al.  Endophilin marks and controls a clathrin-independent endocytic pathway , 2014, Nature.

[25]  T. Cijsouw,et al.  Quantitative image analysis tool to study the plasma membrane localization of proteins and cortical actin in neuroendocrine cells , 2014, Journal of Neuroscience Methods.

[26]  M. Verhage,et al.  The BAR Domain Protein PICK1 Controls Vesicle Number and Size in Adrenal Chromaffin Cells , 2014, The Journal of Neuroscience.

[27]  Matthijs Verhage,et al.  A solution to dependency: using multilevel analysis to accommodate nested data , 2014, Nature Neuroscience.

[28]  Hsueh-Cheng Chiang,et al.  Exocytosis and endocytosis: modes, functions, and coupling mechanisms. , 2014, Annual review of physiology.

[29]  Y. Bailly,et al.  Exocytosis and Endocytosis in Neuroendocrine Cells: Inseparable Membranes! , 2013, Front. Endocrinol..

[30]  S. Gasman,et al.  Intersectin: The Crossroad between Vesicle Exocytosis and Endocytosis , 2013, Front. Endocrinol..

[31]  O. Shupliakov,et al.  Fast neurotransmitter release regulated by the endocytic scaffold intersectin , 2013, Proceedings of the National Academy of Sciences.

[32]  O. Shupliakov,et al.  The dynamin-binding domains of Dap160/intersectin affect bulk membrane retrieval in synapses , 2013, Journal of Cell Science.

[33]  G. van den Bogaart,et al.  Controlling synaptotagmin activity by electrostatic screening , 2012, Nature Structural &Molecular Biology.

[34]  Pietro De Camilli,et al.  Recruitment of Endophilin to Clathrin-Coated Pit Necks Is Required for Efficient Vesicle Uncoating after Fission , 2011, Neuron.

[35]  O. Shupliakov,et al.  Role of the Clathrin Terminal Domain in Regulating Coated Pit Dynamics Revealed by Small Molecule Inhibition , 2011, Cell.

[36]  L. Brodin,et al.  The Structure and Function of Endophilin Proteins , 2011, Cell Biochemistry and Biophysics.

[37]  S. Schmid,et al.  A new role for the dynamin GTPase in the regulation of fusion pore expansion , 2011, Molecular Biology of the Cell.

[38]  M. Bader,et al.  How important are Rho GTPases in neurosecretion? , 2011, Journal of neurochemistry.

[39]  N. Vitale,et al.  The Rho Guanine Nucleotide Exchange Factors Intersectin 1L and β-Pix Control Calcium-Regulated Exocytosis in Neuroendocrine PC12 Cells , 2010, Cellular and Molecular Neurobiology.

[40]  Shyue-An Chan,et al.  Dynamin and Myosin Regulate Differential Exocytosis from Mouse Adrenal Chromaffin Cells , 2010, Cellular and Molecular Neurobiology.

[41]  J. Kaplan,et al.  Endophilin Functions as a Membrane-Bending Molecule and Is Delivered to Endocytic Zones by Exocytosis , 2010, Cell.

[42]  Agustín D. Martínez,et al.  The Association of Dynamin with Synaptophysin Regulates Quantal Size and Duration of Exocytotic Events in Chromaffin Cells , 2010, The Journal of Neuroscience.

[43]  A. Vahedi-Faridi,et al.  Regulation of synaptic vesicle recycling by complex formation between intersectin 1 and the clathrin adaptor complex AP2 , 2010, Proceedings of the National Academy of Sciences.

[44]  Dietmar Riedel,et al.  Synaptotagmin-1 Docks Secretory Vesicles to Syntaxin-1/SNAP-25 Acceptor Complexes , 2009, Cell.

[45]  N. N. Kasri,et al.  The Rho-Linked Mental Retardation Protein OPHN1 Controls Synaptic Vesicle Endocytosis via Endophilin A1 , 2009, Current Biology.

[46]  D. Finkelstein,et al.  Mice deficient for the chromosome 21 ortholog Itsn1 exhibit vesicle-trafficking abnormalities. , 2008, Human molecular genetics.

[47]  U. Matti,et al.  CAPS Facilitates Filling of the Rapidly Releasable Pool of Large Dense-Core Vesicles , 2008, The Journal of Neuroscience.

[48]  T. Südhof,et al.  Synaptotagmin-1 and -7 are functionally overlapping Ca2+ sensors for exocytosis in adrenal chromaffin cells , 2008, Proceedings of the National Academy of Sciences.

[49]  Attila Gulyás-Kovács,et al.  Munc18-1: Sequential Interactions with the Fusion Machinery Stimulate Vesicle Docking and Priming , 2007, The Journal of Neuroscience.

[50]  M. Verhage,et al.  Docking of Secretory Vesicles Is Syntaxin Dependent , 2006, PloS one.

[51]  Derek Toomre,et al.  Two synaptojanin 1 isoforms are recruited to clathrin-coated pits at different stages , 2006, Proceedings of the National Academy of Sciences.

[52]  E. Neher,et al.  A comparison between exocytic control mechanisms in adrenal chromaffin cells and a glutamatergic synapse , 2006, Pflügers Archiv.

[53]  Stéphane Gasman,et al.  Intersectin‐1L nucleotide exchange factor regulates secretory granule exocytosis by activating Cdc42 , 2006, The EMBO journal.

[54]  R. Nicoll,et al.  Distinct Endocytic Pathways Control the Rate and Extent of Synaptic Vesicle Protein Recycling , 2006, Neuron.

[55]  B. Giros,et al.  Interaction between the vesicular glutamate transporter type 1 and endophilin A1, a protein essential for endocytosis , 2006, Journal of neurochemistry.

[56]  A. Elhamdani,et al.  Double Patch Clamp Reveals That Transient Fusion (Kiss-and-Run) Is a Major Mechanism of Secretion in Calf Adrenal Chromaffin Cells: High Calcium Shifts the Mechanism from Kiss-and-Run to Complete Fusion , 2006, The Journal of Neuroscience.

[57]  B. L. de Groot,et al.  Alternative splicing of SNAP-25 regulates secretion through nonconservative substitutions in the SNARE domain. , 2005, Molecular biology of the cell.

[58]  D. Sulzer,et al.  Analysis of exocytotic events recorded by amperometry , 2005, Nature Methods.

[59]  T. Südhof,et al.  v‐SNAREs control exocytosis of vesicles from priming to fusion , 2005, The EMBO journal.

[60]  E. Neher,et al.  Plasmalemmal Phosphatidylinositol-4,5-Bisphosphate Level Regulates the Releasable Vesicle Pool Size in Chromaffin Cells , 2005, The Journal of Neuroscience.

[61]  M. Kirkham,et al.  Ultrastructural identification of uncoated caveolin-independent early endocytic vehicles , 2005, The Journal of cell biology.

[62]  D. Bruns,et al.  Detection of transmitter release with carbon fiber electrodes. , 2004, Methods.

[63]  Kira E. Poskanzer,et al.  Dap160/Intersectin Scaffolds the Periactive Zone to Achieve High-Fidelity Endocytosis and Normal Synaptic Growth , 2004, Neuron.

[64]  P. Verstreken,et al.  Dap160/Intersectin Acts as a Stabilizing Scaffold Required for Synaptic Development and Vesicle Endocytosis , 2004, Neuron.

[65]  E. Jorgensen,et al.  Endophilin Is Required for Synaptic Vesicle Endocytosis by Localizing Synaptojanin , 2003, Neuron.

[66]  E. Neher,et al.  Differential Control of the Releasable Vesicle Pools by SNAP-25 Splice Variants and SNAP-23 , 2003, Cell.

[67]  Manfred Lindau,et al.  Exocytosis of single chromaffin granules in cell-free inside-out membrane patches , 2003, Nature Cell Biology.

[68]  W. Huttner,et al.  Characterization of Endophilin B1b, a Brain-specific Membrane-associated Lysophosphatidic Acid Acyl Transferase with Properties Distinct from Endophilin A1* , 2003, The Journal of Biological Chemistry.

[69]  P. De Camilli,et al.  Imaging direct, dynamin-dependent recapture of fusing secretory granules on plasma membrane lawns from PC12 cells , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[70]  K. Kumakura,et al.  Exocytosis: The Chromaffin Cell As a Model System , 2002, Annals of the New York Academy of Sciences.

[71]  I. Meinertzhagen,et al.  Endophilin Mutations Block Clathrin-Mediated Endocytosis but Not Neurotransmitter Release , 2002, Cell.

[72]  P. De Camilli,et al.  Differential Expression of Endophilin 1 and 2 Dimers at Central Nervous System Synapses* , 2001, The Journal of Biological Chemistry.

[73]  P. De Camilli,et al.  Generation of high curvature membranes mediated by direct endophilin bilayer interactions , 2001, The Journal of cell biology.

[74]  L. Brodin,et al.  Endophilin/SH3p4 Is Required for the Transition from Early to Late Stages in Clathrin-Mediated Synaptic Vesicle Endocytosis , 1999, Neuron.

[75]  T. Südhof,et al.  EHSH1/Intersectin, a Protein That Contains EH and SH3 Domains and Binds to Dynamin and SNAP-25 , 1999, The Journal of Biological Chemistry.

[76]  R. Kelly,et al.  SH3-domain-containing proteins function at distinct steps in clathrin-coated vesicle formation , 1999, Nature Cell Biology.

[77]  C. Der,et al.  Splice Variants of Intersectin Are Components of the Endocytic Machinery in Neurons and Nonneuronal Cells* , 1999, The Journal of Biological Chemistry.

[78]  Pietro De Camilli,et al.  Functional partnership between amphiphysin and dynamin in clathrin-mediated endocytosis , 1999, Nature Cell Biology.

[79]  L. Castagnoli,et al.  Intersectin, a Novel Adaptor Protein with Two Eps15 Homology and Five Src Homology 3 Domains* , 1998, The Journal of Biological Chemistry.

[80]  Pier Paolo Di Fiore,et al.  Epsin is an EH-domain-binding protein implicated in clathrin-mediated endocytosis , 1998, Nature.

[81]  E. Neher,et al.  Multiple Forms of Endocytosis In Bovine Adrenal Chromaffin Cells , 1997, The Journal of cell biology.

[82]  P. De Camilli,et al.  The SH3p4/Sh3p8/SH3p13 protein family: binding partners for synaptojanin and dynamin via a Grb2-like Src homology 3 domain. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[83]  W. Sossin,et al.  Identification of the Major Synaptojanin-binding Proteins in Brain* , 1997, The Journal of Biological Chemistry.

[84]  P. De Camilli,et al.  The synaptic vesicle cycle: a single vesicle budding step involving clathrin and dynamin , 1996, The Journal of cell biology.

[85]  Robert H. Chow,et al.  Delay in vesicle fusion revealed by electrochemical monitoring of single secretory events in adrenal chromaffin cells , 1992, Nature.

[86]  Ira Milosevic Spatial and Temporal Aspects of Phosphoinositides in Endocytosis Studied in the Isolated Plasma Membranes. , 2018, Methods in molecular biology.

[87]  N. Ringstad,et al.  The SH 3 p 4 y Sh 3 p 8 y SH 3 p 13 protein family : Binding partners for synaptojanin and dynamin via a Grb 2-like Src homology 3 domain , 1997 .