Temperature trends for reaction rates, hydrogen generation, and partitioning of iron during experimental serpentinization of olivine

[1]  S. Humphris,et al.  Fluid mixing and the deep biosphere of a fossil Lost City-type hydrothermal system at the Iberia Margin , 2015, Proceedings of the National Academy of Sciences.

[2]  W. Seyfried,et al.  The Lost City hydrothermal system: Constraints imposed by vent fluid chemistry and reaction path models on subseafloor heat and mass transfer processes , 2015 .

[3]  Christopher R. German,et al.  Pathways for abiotic organic synthesis at submarine hydrothermal fields , 2015, Proceedings of the National Academy of Sciences.

[4]  S. Humphris,et al.  Fluids in the Crust. Experimental constraints on fluid-rock reactions during incipient serpentinization of harzburgite , 2014 .

[5]  D. Cardace,et al.  Insights into environmental controls on microbial communities in a continental serpentinite aquifer using a microcosm-based approach , 2014, Front. Microbiol..

[6]  F. Brunet,et al.  Water diffusion-transport in a synthetic dunite: Consequences for oceanic peridotite serpentinization , 2014 .

[7]  S. Humphris,et al.  Magnetite in seafloor serpentinite—Some like it hot , 2014 .

[8]  H. Satoh,et al.  Surface-specific measurements of olivine dissolution by phase-shift interferometry , 2014 .

[9]  N. Hirano,et al.  Coupled reactions and silica diffusion during serpentinization , 2013 .

[10]  I. Daniel,et al.  Aluminum speeds up the hydrothermal alteration of olivine , 2013 .

[11]  T. McCollom,et al.  Compositional controls on hydrogen generation during serpentinization of ultramafic rocks , 2013 .

[12]  M. Andreani,et al.  μXANES study of iron redox state in serpentine during oceanic serpentinization , 2013 .

[13]  A. Veríssimo,et al.  Microbial and functional diversity of a subterrestrial high pH groundwater associated to serpentinization. , 2013, Environmental microbiology.

[14]  J. G. Kuenen,et al.  Geochemistry and geobiology of a present-day serpentinization site in California: The Cedars , 2013 .

[15]  William J. Brazelton,et al.  Bacterial Communities Associated with Subsurface Geochemical Processes in Continental Serpentinite Springs , 2013, Applied and Environmental Microbiology.

[16]  Barbara Sherwood Lollar,et al.  ABIOTIC METHANE ON EARTH , 2013 .

[17]  J. Seewald,et al.  Serpentinites, Hydrogen, and Life , 2013 .

[18]  J. Charlou,et al.  High production and fluxes of H2 and CH4 and evidence of abiotic hydrocarbon synthesis by serpentinization in ultramafic‐hosted hydrothermal systems on the Mid‐Atlantic Ridge , 2013 .

[19]  D. Kelley,et al.  Serpentinization of Oceanic Peridotites: Implications for Geochemical Cycles and Biological Activity , 2013 .

[20]  R. Chiriac,et al.  Mineral replacement rate of olivine by chrysotile and brucite under high alkaline conditions , 2012 .

[21]  M. Cannat,et al.  Serpentinization of oceanic peridotites: 2. Kinetics and processes of San Carlos olivine hydrothermal alteration , 2012 .

[22]  Atsushi Okamoto,et al.  Progress of hydration reactions in olivine–H2O and orthopyroxenite–H2O systems at 250 °C and vapor-saturated pressure , 2011 .

[23]  G. Etiope,et al.  Abiotic methane flux from the Chimaera seep and Tekirova ophiolites (Turkey): Understanding gas exhalation from low temperature serpentinization and implications for Mars , 2011 .

[24]  M. Harfouche,et al.  Mineralogical evidence for H2 degassing during serpentinization at 300 °C/300 bar , 2011 .

[25]  W. Martin,et al.  Serpentinization as a source of energy at the origin of life , 2010, Geobiology.

[26]  J. I. Goldsmith,et al.  Carbonate control of H2 and CH4 production in serpentinization systems at elevated P‐Ts , 2010 .

[27]  M. Lilley,et al.  Elevated concentrations of formate, acetate and dissolved organic carbon found at the Lost City hydrothermal field , 2010 .

[28]  T. McCollom,et al.  Iron partitioning and hydrogen generation during serpentinization of abyssal peridotites from 15°N on the Mid-Atlantic Ridge , 2009 .

[29]  M. Velbel Dissolution of olivine during natural weathering , 2009 .

[30]  Shiv k. Sharma,et al.  Onset and Progression of Serpentinization and Magnetite Formation in Olivine-rich Troctolite from IODP Hole U1309D , 2009 .

[31]  T. McCollom,et al.  Thermodynamic constraints on hydrogen generation during serpentinization of ultramafic rocks , 2009 .

[32]  I. Savov,et al.  Chemical and isotopic constraints on water/rock interactions at the Lost City hydrothermal field, 30°N Mid-Atlantic Ridge , 2008 .

[33]  W. Martin,et al.  Hydrothermal vents and the origin of life , 2008, Nature Reviews Microbiology.

[34]  B. W. Evans Control of the Products of Serpentinization by the Fe2+Mg –1 Exchange Potential of Olivine and Orthopyroxene , 2008 .

[35]  M. Muñoz,et al.  Occurrence, composition and growth of polyhedral serpentine , 2008 .

[36]  Deborah S. Kelley,et al.  Abiogenic Hydrocarbon Production at Lost City Hydrothermal Field , 2008, Science.

[37]  T. McCollom Geochemical constraints on sources of metabolic energy for chemolithoautotrophy in ultramafic-hosted deep-sea hydrothermal systems. , 2007, Astrobiology.

[38]  W. Martin,et al.  On the origin of biochemistry at an alkaline hydrothermal vent , 2007, Philosophical Transactions of the Royal Society B: Biological Sciences.

[39]  William E. Seyfried,et al.  Redox evolution and mass transfer during serpentinization : An experimental and theoretical study at 200 °C, 500 bar with implications for ultramafic-hosted hydrothermal systems at Mid-Ocean Ridges , 2007 .

[40]  B. Frost,et al.  On Silica Activity and Serpentinization , 2007 .

[41]  J. Seewald,et al.  Abiotic synthesis of organic compounds in deep-sea hydrothermal environments. , 2007, Chemical reviews.

[42]  J. Baross,et al.  Methane- and Sulfur-Metabolizing Microbial Communities Dominate the Lost City Hydrothermal Field Ecosystem , 2006, Applied and Environmental Microbiology.

[43]  H. Paulick,et al.  Unraveling the sequence of serpentinization reactions: petrography, mineral chemistry, and petrophysics of serpentinites from MAR 15°N (ODP Leg 209, Site 1274) , 2006 .

[44]  M. Lilley,et al.  Low temperature volatile production at the Lost City Hydrothermal Field, evidence from a hydrogen stable isotope geothermometer , 2006 .

[45]  Roberto Compagnoni,et al.  Micro-Raman spectroscopy for a quick and reliable identification of serpentine minerals from ultramafics , 2006 .

[46]  R. Downs,et al.  Single-crystal X-ray diffraction of spinels from the San Carlos Volcanic Field, Arizona: Spinel as a geothermometer , 2005 .

[47]  Dana R. Yoerger,et al.  A Serpentinite-Hosted Ecosystem: The Lost City Hydrothermal Field , 2005, Science.

[48]  M. D’Antonio,et al.  Serpentine and brucite of ultramafic clasts from the South Chamorro Seamount (Ocean Drilling Program Leg 195, Site 1200): inferences for the serpentinization of the Mariana forearc mantle , 2004, Mineralogical Magazine.

[49]  B. Reynard,et al.  High-pressure behaviour of serpentine minerals: a Raman spectroscopic study , 2004 .

[50]  W. Seyfried,et al.  Hydrocarbons in Hydrothermal Vent Fluids: The Role of Chromium-Bearing Catalysts , 2004, Science.

[51]  J. Palandri,et al.  Geochemical models of metasomatism in ultramafic systems: Serpentinization, rodingitization, and sea floor carbonate chimney precipitation , 2004 .

[52]  S. Brantley,et al.  The effect of time on the weathering of silicate minerals: why do weathering rates differ in the laboratory and field? , 2003 .

[53]  H. Paulick,et al.  Seawater‐peridotite interactions: First insights from ODP Leg 209, MAR 15°N , 2003 .

[54]  Thomas M. McCollom,et al.  Experimental constraints on the hydrothermal reactivity of organic acids and acid anions: I. Formic acid and formate , 2003 .

[55]  W. Seyfried,et al.  Compositional controls on vent fluids from ultramafic-hosted hydrothermal systems at mid-ocean ridges: An experimental study at 400°C, 500 bars , 2003 .

[56]  J. Charlou,et al.  Geochemistry of high H2 and CH4 vent fluids issuing from ultramafic rocks at the Rainbow hydrothermal field (36°14'N, MAR) , 2002 .

[57]  Thomas M. McCollom,et al.  A reassessment of the potential for reduction of dissolved CO 2 to hydrocarbons during serpentinization of olivine , 2001 .

[58]  S. Brantley,et al.  Surface area and porosity of primary silicate minerals , 2000 .

[59]  M. Dyar,et al.  THE COMPOSITION OF CHRYSOTILE AND ITS RELATIONSHIP WITH LIZARDITE , 1998 .

[60]  C. Kissel,et al.  Low-temperature magnetic behavior of titanomagnetites , 1998 .

[61]  David J. Dunlop,et al.  Rock Magnetism: Fundamentals and Frontiers , 1997 .

[62]  E. Shock,et al.  Inorganic species in geologic fluids: correlations among standard molal thermodynamic properties of aqueous ions and hydroxide complexes. , 1997, Geochimica et cosmochimica acta.

[63]  William E Seyfried,et al.  Reduction of CO2 during serpentinization of olivine at 300 °C and 500 bar , 1996 .

[64]  R. G. Pritchard,et al.  Iowaite, a re-investigation , 1994, Mineralogical Magazine.

[65]  M. Dyar,et al.  The composition of lizardite 1T and, the formation of magnetite in serpentinites , 1993 .

[66]  J. Böhlke,et al.  Geochemistry of reduced gas related to serpentinization of the Zambales ophiolite, Philippines , 1990 .

[67]  Everett L. Shock,et al.  Calculation of the thermodynamic and transport properties of aqueous species at high pressures and temperatures: Correlation algorithms for ionic species and equation of state predictions to 5 kb and 1000°C , 1988 .

[68]  C. Neal,et al.  Hydrogen generation from mantle source rocks in Oman , 1983 .

[69]  E. U. Franck,et al.  THE SYSTEM HYDROGEN-WATER UP TO 440°C AND 2500 BAR PRESSURE , 1981 .

[70]  G. Stroink,et al.  Crystal‐field properties of Fe in brucite Mg(OH)2 , 1979 .

[71]  J. B. Moody An experimental study on the serpentinization of iron-bearing olivines , 1976 .

[72]  J. B. Moody Serpentinization: a review , 1976 .

[73]  N. J. Page Serpentinization at Burro Mountain, California , 1967 .

[74]  P. B. Hostetler,et al.  Brucite in alpine serpentinites , 1966 .

[75]  W. Brazelton,et al.  Serpentinization, Carbon, and Deep Life , 2013 .

[76]  F. Brunet,et al.  Serpentinization of oceanic peridotites: 1. A high‐sensitivity method to monitor magnetite production in hydrothermal experiments , 2012 .

[77]  P. B. Hosrnrlnn,et al.  BRUCITE IN ALPINE SERPENTINITES , 2007 .

[78]  C. Mével,et al.  HYDROTHERMAL ALTERATION OF THE UPPER-MANTLE SECTION AT HESS DEEP , 2006 .

[79]  Everett L. Shock,et al.  Calculation of the thermodynamic and transport properties of aqueous species at high pressures and temperatures : Standard partial molal properties of organic species , 2002 .

[80]  G. Früh-Green,et al.  Petrologic and stable isotope constraints on hydrothermal alteration and serpentinization of the EPR shallow mantle at Hess Deep (Site 895) , 1996 .

[81]  C. Mével,et al.  15. HYDROTHERMAL ALTERATION OF THE UPPER-MANTLE SECTION AT HESS DEEP1 , 1996 .

[82]  Davrn S. O'Hlslry,et al.  The composition of lizardite 1T and, the formation of magnetite in serpentinites , 1993 .

[83]  H. Helgeson,et al.  Summary and critique of the thermodynamic properties of rock forming minerals , 1978 .

[84]  E. C. Beutner Slaty cleavage and related strain in Martinsburg Slate, Delaware Water Gap, New Jersey , 1978 .

[85]  B. Martin,et al.  Some experimental and theoretical observations on the kinetics of hydration reactions with particular reference to serpentinization , 1970 .