Multilevel Clustering via Wasserstein Means
暂无分享,去创建一个
Dinh Q. Phung | Nhat Ho | Hung Hai Bui | XuanLong Nguyen | Mikhail Yurochkin | Viet Huynh | Nhat Ho | X. Nguyen | Mikhail Yurochkin | H. Bui | Viet Huynh | M. Yurochkin
[1] David Pollard,et al. Quantization and the method of k -means , 1982, IEEE Trans. Inf. Theory.
[2] S. Graf,et al. Foundations of Quantization for Probability Distributions , 2000 .
[3] P. Donnelly,et al. Inference of population structure using multilocus genotype data. , 2000, Genetics.
[4] C. Villani. Topics in Optimal Transportation , 2003 .
[5] Michael I. Jordan,et al. Latent Dirichlet Allocation , 2001, J. Mach. Learn. Res..
[6] Antonio Torralba,et al. Modeling the Shape of the Scene: A Holistic Representation of the Spatial Envelope , 2001, International Journal of Computer Vision.
[7] Michael I. Jordan,et al. Hierarchical Dirichlet Processes , 2006 .
[8] A. Gelfand,et al. The Nested Dirichlet Process , 2008 .
[9] Guillaume Carlier,et al. Barycenters in the Wasserstein Space , 2011, SIAM J. Math. Anal..
[10] XuanLong Nguyen,et al. Posterior contraction of the population polytope in finite admixture models , 2012, ArXiv.
[11] Michael I. Jordan,et al. Revisiting k-means: New Algorithms via Bayesian Nonparametrics , 2011, ICML.
[12] Marco Cuturi,et al. Sinkhorn Distances: Lightspeed Computation of Optimal Transport , 2013, NIPS.
[13] X. Nguyen. Convergence of latent mixing measures in finite and infinite mixture models , 2011, 1109.3250.
[14] Qiaozhu Mei,et al. Understanding the Limiting Factors of Topic Modeling via Posterior Contraction Analysis , 2014, ICML.
[15] Dinh Q. Phung,et al. Bayesian Nonparametric Multilevel Clustering with Group-Level Contexts , 2014, ICML.
[16] Arnaud Doucet,et al. Fast Computation of Wasserstein Barycenters , 2013, ICML.
[17] J. A. Cuesta-Albertos,et al. A fixed-point approach to barycenters in Wasserstein space , 2015, 1511.05355.
[18] Gabriel Peyré,et al. Iterative Bregman Projections for Regularized Transportation Problems , 2014, SIAM J. Sci. Comput..
[19] Volkan Cevher,et al. WASP: Scalable Bayes via barycenters of subset posteriors , 2015, AISTATS.
[20] Shane T. Jensen,et al. Nonparametric multi-level clustering of human epilepsy seizures , 2016 .
[21] Steffen Borgwardt,et al. Discrete Wasserstein barycenters: optimal transport for discrete data , 2015, Mathematical Methods of Operations Research.
[22] Svetha Venkatesh,et al. Scalable Nonparametric Bayesian Multilevel Clustering , 2016, UAI.
[23] Svetha Venkatesh,et al. MCNC: Multi-Channel Nonparametric Clustering from heterogeneous data , 2016, 2016 23rd International Conference on Pattern Recognition (ICPR).