VEGF receptor signal transduction.

[1]  Lena Claesson-Welsh,et al.  Ligand-induced Vascular Endothelial Growth Factor Receptor-3 (VEGFR-3) Heterodimerization with VEGFR-2 in Primary Lymphatic Endothelial Cells Regulates Tyrosine Phosphorylation Sites* , 2003, Journal of Biological Chemistry.

[2]  R. Caldwell,et al.  VEGF‐induced paracellular permeability in cultured endothelial cells involves urokinase and its receptor , 2003, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[3]  C. Wahlestedt,et al.  Small GTP-Binding Protein Rac Is an Essential Mediator of Vascular Endothelial Growth Factor-Induced Endothelial Fenestrations and Vascular Permeability , 2003, Circulation.

[4]  T. Libermann,et al.  Excess placental soluble fms-like tyrosine kinase 1 (sFlt1) may contribute to endothelial dysfunction, hypertension, and proteinuria in preeclampsia , 2003 .

[5]  S. Nishikawa,et al.  Modulation of VEGFR-2-mediated endothelial-cell activity by VEGF-C/VEGFR-3. , 2003, Blood.

[6]  Kenneth J. Hillan,et al.  Angiogenesis-Independent Endothelial Protection of Liver: Role of VEGFR-1 , 2003, Science.

[7]  Napoleone Ferrara,et al.  Role of vascular endothelial growth factor in physiologic and pathologic angiogenesis: therapeutic implications. , 2002, Seminars in oncology.

[8]  E. Manseau,et al.  Vascular Permeability Factor/Vascular Endothelial Growth Factor Induces Lymphangiogenesis as well as Angiogenesis , 2002, The Journal of experimental medicine.

[9]  A. Luttun,et al.  Placental Growth Factor (PlGF) and Its Receptor Flt‐1 (VEGFR‐1) , 2002 .

[10]  M. Karkkainen,et al.  Insights into the Molecular Pathogenesis and Targeted Treatment of Lymphedema , 2002, Annals of the New York Academy of Sciences.

[11]  Weicheng Wu,et al.  Sphingosine Kinase Mediates Vascular Endothelial Growth Factor-Induced Activation of Ras and Mitogen-Activated Protein Kinases , 2002, Molecular and Cellular Biology.

[12]  Koichi Hattori,et al.  Vascular and haematopoietic stem cells: novel targets for anti-angiogenesis therapy? , 2002, Nature Reviews Cancer.

[13]  M. Karkkainen,et al.  Abnormal lymphatic vessel development in neuropilin 2 mutant mice. , 2002, Development.

[14]  F. Fagotto,et al.  The ins and outs of APC and β‐catenin nuclear transport , 2002 .

[15]  S. Rafii,et al.  Placental growth factor reconstitutes hematopoiesis by recruiting VEGFR1+ stem cells from bone-marrow microenvironment , 2002, Nature Medicine.

[16]  N. Ferrara,et al.  VEGF regulates haematopoietic stem cell survival by an internal autocrine loop mechanism , 2002, Nature.

[17]  K. Alitalo,et al.  Suppression of tumor lymphangiogenesis and lymph node metastasis by blocking vascular endothelial growth factor receptor 3 signaling. , 2002, Journal of the National Cancer Institute.

[18]  G. Vrensen,et al.  Expression of Vascular Endothelial Growth Factor Receptors 1, 2, and 3 in Quiescent Endothelia , 2002, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society.

[19]  Rakesh K Jain,et al.  Lymphatic Metastasis in the Absence of Functional Intratumor Lymphatics , 2002, Science.

[20]  Peter Carmeliet,et al.  Molecular mechanisms of lymphangiogenesis in health and disease. , 2002, Cancer cell.

[21]  A. Adamis,et al.  Vascular endothelial growth factor gene regulation and action in diabetic retinopathy. , 2002, Ophthalmology clinics of North America.

[22]  M. Karkkainen,et al.  Lymphatic endothelial regulation, lymphoedema, and lymph node metastasis. , 2002, Seminars in cell & developmental biology.

[23]  K. Alitalo,et al.  Vascular growth factors and lymphangiogenesis. , 2002, Physiological reviews.

[24]  G. Neufeld,et al.  The neuropilins: multifunctional semaphorin and VEGF receptors that modulate axon guidance and angiogenesis. , 2002, Trends in cardiovascular medicine.

[25]  Adrian L. Harris,et al.  Hypoxia — a key regulatory factor in tumour growth , 2002, Nature Reviews Cancer.

[26]  M. Karkkainen,et al.  Lymphatic endothelium: a new frontier of metastasis research , 2002, Nature Cell Biology.

[27]  K. Pumiglia,et al.  Vascular Endothelial Growth Factor Induction of the Angiogenic Phenotype Requires Ras Activation* , 2001, The Journal of Biological Chemistry.

[28]  G. Vrensen,et al.  VEGFR‐3 in adult angiogenesis , 2001, The Journal of pathology.

[29]  S. Rafii,et al.  Impaired recruitment of bone-marrow–derived endothelial and hematopoietic precursor cells blocks tumor angiogenesis and growth , 2001, Nature Medicine.

[30]  E C Nice,et al.  Isolated lymphatic endothelial cells transduce growth, survival and migratory signals via the VEGF‐C/D receptor VEGFR‐3 , 2001, The EMBO journal.

[31]  D. Mukhopadhyay,et al.  Vascular Permeability Factor (VPF)/Vascular Endothelial Growth Factor (VEGF) Receptor-1 Down-modulates VPF/VEGF Receptor-2-mediated Endothelial Cell Proliferation, but Not Migration, through Phosphatidylinositol 3-Kinase-dependent Pathways* , 2001, The Journal of Biological Chemistry.

[32]  M. Shibuya,et al.  A single autophosphorylation site on KDR/Flk‐1 is essential for VEGF‐A‐dependent activation of PLC‐γ and DNA synthesis in vascular endothelial cells , 2001, The EMBO journal.

[33]  L Claesson-Welsh,et al.  Signaling properties of VEGF receptor-1 and -2 homo- and heterodimers. , 2001, The international journal of biochemistry & cell biology.

[34]  T. Noda,et al.  Involvement of Flt-1 tyrosine kinase (vascular endothelial growth factor receptor-1) in pathological angiogenesis. , 2001, Cancer research.

[35]  L. Claesson‐Welsh,et al.  VEGF-induced activation of phosphoinositide 3-kinase is dependent on focal adhesion kinase. , 2001, Experimental cell research.

[36]  Seppo Ylä-Herttuala,et al.  Inhibition of lymphangiogenesis with resulting lymphedema in transgenic mice expressing soluble VEGF receptor-3 , 2001, Nature Medicine.

[37]  Thomas Hawighorst,et al.  Induction of tumor lymphangiogenesis by VEGF-C promotes breast cancer metastasis , 2001, Nature Medicine.

[38]  Steven A. Stacker,et al.  VEGF-D promotes the metastatic spread of tumor cells via the lymphatics , 2001, Nature Medicine.

[39]  K. Shitara,et al.  and surface marker for the lineage of monocyte-macrophages in humans Flt-1 , vascular endothelial growth factor receptor 1 , is a novel cell , 2001 .

[40]  K. Alitalo,et al.  VEGF-C signaling pathways through VEGFR-2 and VEGFR-3 in vasculoangiogenesis and hematopoiesis. , 2000, Blood.

[41]  Shigeyoshi Itohara,et al.  Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis , 2000, Nature Cell Biology.

[42]  N. Rahimi,et al.  Receptor Chimeras Indicate That the Vascular Endothelial Growth Factor Receptor-1 (VEGFR-1) Modulates Mitogenic Activity of VEGFR-2 in Endothelial Cells* , 2000, The Journal of Biological Chemistry.

[43]  R. Hehlmann,et al.  HERV-K-T47D-Related long terminal repeats mediate polyadenylation of cellular transcripts. , 2000, Genomics.

[44]  A J Warner,et al.  The Shc-related adaptor protein, Sck, forms a complex with the vascular-endothelial-growth-factor receptor KDR in transfected cells. , 2000, The Biochemical journal.

[45]  L. Mayo,et al.  VRAP Is an Adaptor Protein That Binds KDR, a Receptor for Vascular Endothelial Cell Growth Factor* , 2000, The Journal of Biological Chemistry.

[46]  P. Schwartzberg,et al.  Selective requirement for Src kinases during VEGF-induced angiogenesis and vascular permeability. , 1999, Molecular cell.

[47]  T. Yagi,et al.  A requirement for neuropilin-1 in embryonic vessel formation. , 1999, Development.

[48]  P. Carmeliet,et al.  Targeted Deficiency or Cytosolic Truncation of the VE-cadherin Gene in Mice Impairs VEGF-Mediated Endothelial Survival and Angiogenesis , 1999, Cell.

[49]  S. Nishikawa,et al.  Vascular Endothelial Growth Factor Can Substitute for Macrophage Colony-Stimulating Factor in the Support of Osteoclastic Bone Resorption , 1999, The Journal of experimental medicine.

[50]  J. Peng,et al.  Increased hemangioblast commitment, not vascular disorganization, is the primary defect in flt-1 knock-out mice. , 1999, Development.

[51]  R. Busse,et al.  Activation of nitric oxide synthase in endothelial cells by Akt-dependent phosphorylation , 1999, Nature.

[52]  W. Sessa,et al.  Regulation of endothelium-derived nitric oxide production by the protein kinase Akt , 1999, Nature.

[53]  Willem Flameng,et al.  Impaired myocardial angiogenesis and ischemic cardiomyopathy in mice lacking the vascular endothelial growth factor isoforms VEGF164 and VEGF188 , 1999, Nature Medicine.

[54]  D. Hanahan,et al.  Effects of angiogenesis inhibitors on multistage carcinogenesis in mice. , 1999, Science.

[55]  M. Shibuya,et al.  VEGF activates protein kinase C-dependent, but Ras-independent Raf-MEK-MAP kinase pathway for DNA synthesis in primary endothelial cells , 1999, Oncogene.

[56]  H. Dvorak,et al.  Pathways of Macromolecular Extravasation Across Microvascular Endothelium in Response to VPF/VEGF and Other Vasoactive Mediators , 1999, Microcirculation.

[57]  M. Karkkainen,et al.  Overexpression of VEGF in Testis and Epididymis Causes Infertility in Transgenic Mice: Evidence for Nonendothelial Targets for VEGF , 1998, The Journal of cell biology.

[58]  A. N. Corps,et al.  A vascular endothelial growth factor antagonist is produced by the human placenta and released into the maternal circulation. , 1998, Biology of reproduction.

[59]  Vishva Dixit,et al.  Vascular Endothelial Growth Factor Regulates Endothelial Cell Survival through the Phosphatidylinositol 3′-Kinase/Akt Signal Transduction Pathway , 1998, The Journal of Biological Chemistry.

[60]  K. Alitalo,et al.  Cardiovascular failure in mouse embryos deficient in VEGF receptor-3. , 1998, Science.

[61]  C. Wernstedt,et al.  Identification of Vascular Endothelial Growth Factor Receptor-1 Tyrosine Phosphorylation Sites and Binding of SH2 Domain-containing Molecules* , 1998, The Journal of Biological Chemistry.

[62]  T. Noda,et al.  Flt-1 lacking the tyrosine kinase domain is sufficient for normal development and angiogenesis in mice. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[63]  M. Corada,et al.  Vascular endothelial growth factor induces VE-cadherin tyrosine phosphorylation in endothelial cells. , 1998, Journal of cell science.

[64]  Shay Soker,et al.  Neuropilin-1 Is Expressed by Endothelial and Tumor Cells as an Isoform-Specific Receptor for Vascular Endothelial Growth Factor , 1998, Cell.

[65]  Jacques Landry,et al.  p38 MAP kinase activation by vascular endothelial growth factor mediates actin reorganization and cell migration in human endothelial cells , 1997, Oncogene.

[66]  M. Shibuya,et al.  The phosphorylated 1169-tyrosine containing region of flt-1 kinase (VEGFR-1) is a major binding site for PLCgamma. , 1997, Biochemical and biophysical research communications.

[67]  G. Palade,et al.  Neovasculature induced by vascular endothelial growth factor is fenestrated. , 1997, Cancer research.

[68]  G. Semenza,et al.  Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1 , 1996, Molecular and cellular biology.

[69]  G. Breier,et al.  The Vascular Endothelial Growth Factor Receptor Flt-1 Mediates Biological Activities , 1996, The Journal of Biological Chemistry.

[70]  A. Mantovani,et al.  Migration of human monocytes in response to vascular endothelial growth factor (VEGF) is mediated via the VEGF receptor flt-1. , 1996, Blood.

[71]  Y. Satow,et al.  Expression of the Vascular Endothelial Growth Factor ( VEGF ) Receptor Gene , KDR , in Hematopoietic Cells and Inhibitory Effect of VEGF on Apoptotic Cell Death Caused by Ionizing Radiation , 2022 .

[72]  J. Rossant,et al.  Role of the Flt-1 receptor tyrosine kinase in regulating the assembly of vascular endothelium , 1995, Nature.

[73]  Janet Rossant,et al.  Failure of blood-island formation and vasculogenesis in Flk-1-deficient mice , 1995, Nature.

[74]  K. Alitalo,et al.  Signalling properties of FLT4, a proteolytically processed receptor tyrosine kinase related to two VEGF receptors. , 1994, Oncogene.

[75]  M. Shibuya,et al.  Different signal transduction properties of KDR and Flt1, two receptors for vascular endothelial growth factor. , 1994, The Journal of biological chemistry.

[76]  A. Mercer,et al.  Homologs of vascular endothelial growth factor are encoded by the poxvirus orf virus , 1994, Journal of virology.

[77]  K. Pajusola,et al.  Two human FLT4 receptor tyrosine kinase isoforms with distinct carboxy terminal tails are produced by alternative processing of primary transcripts. , 1993, Oncogene.

[78]  D. Birnbaum,et al.  The FLT4 gene encodes a transmembrane tyrosine kinase related to the vascular endothelial growth factor receptor. , 1993, Oncogene.

[79]  S. Soker,et al.  The binding of vascular endothelial growth factor to its receptors is dependent on cell surface-associated heparin-like molecules. , 1992, The Journal of biological chemistry.

[80]  H. Dvorak,et al.  A highly conserved vascular permeability factor secreted by a variety of human and rodent tumor cell lines. , 1986, Cancer research.