Physical limitations on broadband scattering by heterogeneous obstacles

In this paper, new physical limitations on the extinction cross section and broadband scattering are investigated. A measure of broadband scattering in terms of the integrated extinction is derived for a large class of scatterers based on the holomorphic properties of the forward scattering dyadic. Closed-form expressions of the integrated extinction are given for the homogeneous ellipsoids, and theoretical bounds are discussed for arbitrary heterogeneous scatterers. Finally, the theoretical results are illustrated by numerical computations for a series of generic scatterers.

[1]  P. Barber Absorption and scattering of light by small particles , 1984 .

[2]  Gerhard Kristensson,et al.  The T matrix for acoustic and electromagnetic scattering by circular disks , 1982 .

[3]  Larry D. Travis,et al.  Capabilities and limitations of a current FORTRAN implementation of the T-matrix method for randomly oriented, rotationally symmetric scatterers , 1998 .

[4]  L. J. Chu Physical Limitations of Omni‐Directional Antennas , 1948 .

[5]  Mats Gustafsson,et al.  On the non-uniqueness of the electromagnetic instantaneous response , 2003 .

[6]  D. S. Jones Low Frequency Electromagnetic Radiation , 1979 .

[7]  K. Beard,et al.  A New Model for the Equilibrium Shape of Raindrops , 1987 .

[8]  R. Newton Scattering theory of waves and particles , 1966 .

[9]  John William Strutt,et al.  XV. On the light from the sky, its polarization and colour , 1871 .

[10]  Heinrich W. E. Jung Ueber die kleinste Kugel, die eine räumliche Figur einschliesst. , 1901 .

[11]  R. Clark Jones,et al.  A Generalization of the Dielectric Ellipsoid Problem , 1945 .

[12]  Thomas B. A. Senior,et al.  Rayleigh scattering , 1973 .

[13]  Mats Gustafsson,et al.  Physical limitations on metamaterials: restrictions on scattering and absorption over a frequency interval , 2007 .

[14]  Electromagnetic scattering by a perfectly conducting elliptic disk , 1987 .

[15]  J. Osborn Demagnetizing Factors of the General Ellipsoid , 1945 .

[16]  M. Gustafsson,et al.  Physical limitations on antennas of arbitrary shape , 2007, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[17]  R. Fan THEORETICAL LIMITATIONS ON THE BROADBAND MATCHING OF ARBITRARY IMPEDANCES * , 2003 .

[18]  A. Offord Introduction to the Theory of Fourier Integrals , 1938, Nature.

[19]  G. Mie Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen , 1908 .

[20]  山岸 進,et al.  「レイリー散乱」(Rayleigh Scattering) , 1983 .

[21]  D. S. Jones SCATTERING BY INHOMOGENEOUS DIELECTRIC PARTICLES , 1985 .

[22]  C. Tropea,et al.  Light Scattering from Small Particles , 2003 .

[23]  R. Collin Field theory of guided waves , 1960 .

[24]  Herch Moyses Nussenzveig Diffraction Effects in Semiclassical Scattering , 1992 .

[25]  E. Purcell On the Absorption and Emission of Light by Interstellar Grains , 1969 .

[26]  A. Yaghjian,et al.  Electric dyadic Green's functions in the source region , 1980, Proceedings of the IEEE.

[27]  Robert Bruce Lindsay,et al.  On the Light from the Sky, its Polarization and Colour (1871) , 1970 .

[28]  A. Sihvola,et al.  Polarizabilities of platonic solids , 2004, IEEE Transactions on Antennas and Propagation.