Electromagnetic Nanonetworks for Sensing and Drug Delivery

[1]  Ian F. Akyildiz,et al.  Interference effects on modulation techniques in diffusion based nanonetworks , 2012, Nano Commun. Networks.

[2]  Yen Nee Tan,et al.  Sensing of transcription factor through controlled-assembly of metal nanoparticles modified with segmented DNA elements. , 2010, ACS nano.

[3]  M. Model,et al.  Ligand-receptor interaction rates in the presence of convective mass transport. , 1995, Biophysical journal.

[4]  Mohsen Sardari,et al.  Capacity of discrete molecular diffusion channels , 2011, 2011 IEEE International Symposium on Information Theory Proceedings.

[5]  Jinwoo Cheon,et al.  Exchange-coupled magnetic nanoparticles for efficient heat induction. , 2011, Nature nanotechnology.

[6]  H A Macleod,et al.  Surface plasmon resonance spectroscopy as a tool for investigating the biochemical and biophysical properties of membrane protein systems. I: Theoretical principles. , 1997, Biochimica et biophysica acta.

[7]  Freitas Robert A.Jr CURRENT STATUS OF NANOMEDICINE AND MEDICAL NANOROBOTICS , 2005 .

[8]  S. Redner A guide to first-passage processes , 2001 .

[9]  C. Alexander,et al.  Fc-mediated transport of nanoparticles across airway epithelial cell layers. , 2012, Journal of controlled release : official journal of the Controlled Release Society.

[10]  Joseph Irudayaraj,et al.  Raman multiplexers for alternative gene splicing. , 2008, Analytical chemistry.

[11]  Tad Hogg,et al.  Nanorobot architecture for medical target identification , 2008 .

[12]  W. Jo,et al.  Synthesis of Polymeric Temperature Sensor Based on Photophysical Property of Fullerene and Thermal Sensitivity of Poly(N-isopropylacrylamide) , 2009 .

[13]  S. Pizzi,et al.  Model of Multi-Source Nanonetworks for the Detection of BRCA1 DNA Alterations Based on LSPR Phenomenon , 2013 .

[14]  Amanda S. Barnard,et al.  Visualization of Hybridization in Nanocarbon Systems , 2005 .

[15]  Ian F. Akyildiz,et al.  Channel Modeling and Capacity Analysis for Electromagnetic Wireless Nanonetworks in the Terahertz Band , 2011, IEEE Transactions on Wireless Communications.

[16]  Lucio Vegni,et al.  Optical Properties of Modified Nanorod Particles for Biomedical Sensing , 2014, IEEE Transactions on Magnetics.

[17]  A. Vegni,et al.  Detection of DNA alterations using gold nanoparticles exploiting the LSP phenomenon , 2013, ICECom 2013.

[18]  Ian F. Akyildiz,et al.  Nanonetworks: A new communication paradigm , 2008, Comput. Networks.

[19]  Tatsuya Suda,et al.  Exploratory Research on Molecular Communication between Nanomachines , 2005 .

[20]  Hao Hong,et al.  Applications of gold nanoparticles in cancer nanotechnology. , 2008, Nanotechnology, science and applications.

[21]  Massimiliano Pierobon,et al.  A physical end-to-end model for molecular communication in nanonetworks , 2010, IEEE Journal on Selected Areas in Communications.

[22]  M. Moorthy,et al.  An evaluation of saliva as an alternative to plasma for the detection of hepatitis C virus antibodies. , 2008, Indian journal of medical microbiology.

[23]  Sidney Redner,et al.  A guide to first-passage processes , 2001 .

[24]  Kevin M. Shakesheff,et al.  Responsive Polymers at the Biology/Materials Science Interface , 2006 .

[25]  Lucio Vegni,et al.  Electromagnetic modeling of ellipsoidal nanoparticles for sensing applications , 2013 .

[26]  Sarit S. Agasti,et al.  Gold nanoparticles in chemical and biological sensing. , 2012, Chemical reviews.

[27]  N. Khlebtsov,et al.  Gold nanoparticles in biomedical applications: recent advances and perspectives. , 2012, Chemical Society reviews.

[28]  Ian F. Akyildiz,et al.  Electromagnetic wireless nanosensor networks , 2010, Nano Commun. Networks.

[29]  Gianluca Aloi,et al.  Efficient acoustic communication techniques for nanobots , 2012, BODYNETS.

[30]  Ian F. Akyildiz,et al.  Channel Capacity of Electromagnetic Nanonetworks in the Terahertz Band , 2010, 2010 IEEE International Conference on Communications.

[31]  K. Soppimath,et al.  pH‐Triggered Thermally Responsive Polymer Core–Shell Nanoparticles for Drug Delivery , 2005 .

[32]  G. Sridharan,et al.  Nanotechnology: a new frontier in virus detection in clinical practice. , 2008, Indian journal of medical microbiology.

[33]  Massimiliano Pierobon,et al.  Nanonetworks: A new frontier in communications , 2010, 2010 International Conference on Optical Communication Systems (OPTICS).

[34]  G. McNay,et al.  Multiple labelled nanoparticles for bio detection. , 2004, Faraday discussions.

[35]  K. Hamad-Schifferli,et al.  Selective release of multiple DNA oligonucleotides from gold nanorods. , 2009, ACS nano.

[36]  N. Rapoport Physical stimuli-responsive polymeric micelles for anti-cancer drug delivery , 2007 .

[37]  Özgür B. Akan,et al.  An information theoretical approach for molecular communication , 2007, 2007 2nd Bio-Inspired Models of Network, Information and Computing Systems.

[38]  Peter R Schofield,et al.  Ligand-gated ion channels: mechanisms underlying ion selectivity. , 2004, Progress in biophysics and molecular biology.

[39]  Özgür B. Akan,et al.  Deterministic capacity of information flow in molecular nanonetworks , 2010, Nano Commun. Networks.

[40]  Y. Ying,et al.  Gold Nanorods Based LSPR Biosensor for Label-Free Detection of Alpha-Fetoprotein , 2011 .

[41]  V. Rotello,et al.  Monolayer coated gold nanoparticles for delivery applications. , 2012, Advanced drug delivery reviews.

[42]  Ayala Hubert,et al.  Cancer risks in carriers of the BRCA1/2 Ashkenazi founder mutations , 2007, Journal of Medical Genetics.

[43]  R. Prud’homme,et al.  Multifunctional Nanoparticles for Drug Delivery Applications , 2012 .

[44]  R. Zhuo,et al.  Novel stimuli-responsive micelle self-assembled from Y-shaped P(UA-Y-NIPAAm) copolymer for drug delivery. , 2006, Biomacromolecules.

[45]  S. Perrier,et al.  pH- and thermo-multi-responsive fluorescent micelles from block copolymers via reversible addition fragmentation chain transfer (RAFT) polymerization , 2009 .

[46]  J. Bladel,et al.  Electromagnetic Fields , 1985 .

[47]  R. Prud’homme,et al.  Multifunctional nanoparticles for drug delivery applications : imaging, targeting, and delivery , 2012 .

[48]  Chitta Ranjan Patra,et al.  Fabrication of gold nanoparticles for targeted therapy in pancreatic cancer. , 2010, Advanced drug delivery reviews.

[49]  Xian‐Zheng Zhang,et al.  Stimulus-responsive polymeric nanoparticles for biomedical applications , 2010 .

[50]  Douglas F Easton,et al.  Cancer Incidence in BRCA1 mutation carriers. , 2002, Journal of the National Cancer Institute.

[51]  Wei Zhou,et al.  A label-free biosensor based on silver nanoparticles array for clinical detection of serum p53 in head and neck squamous cell carcinoma , 2011, International journal of nanomedicine.

[52]  Eduard Alarcon,et al.  Diffusion-based channel characterization in molecular nanonetworks , 2011, 2011 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS).

[53]  Ian F. Akyildiz,et al.  Low-Weight Channel Coding for Interference Mitigation in Electromagnetic Nanonetworks in the Terahertz Band , 2011, 2011 IEEE International Conference on Communications (ICC).

[54]  Yi Wang,et al.  QDs-DNA nanosensor for the detection of hepatitis B virus DNA and the single-base mutants. , 2010, Biosensors & bioelectronics.

[55]  Tadashi Nakano,et al.  Channel Model and Capacity Analysis of Molecular Communication with Brownian Motion , 2012, IEEE Communications Letters.

[56]  Younan Xia,et al.  Inorganic nanoparticle-based contrast agents for molecular imaging. , 2010, Trends in molecular medicine.

[57]  J. M. Jornet,et al.  Joint Energy Harvesting and Communication Analysis for Perpetual Wireless Nanosensor Networks in the Terahertz Band , 2012, IEEE Transactions on Nanotechnology.

[58]  Gianluca Aloi,et al.  A Novel Communication Technique for Nanobots Based on Acoustic Signals , 2012, BIONETICS.

[59]  D. Schmaljohann Thermo- and pH-responsive polymers in drug delivery. , 2006, Advanced drug delivery reviews.

[60]  H. Harashima,et al.  Vascular-targeted nanotherapy for obesity: unexpected passive targeting mechanism to obese fat for the enhancement of active drug delivery. , 2012, Journal of controlled release : official journal of the Controlled Release Society.

[61]  S. Ganta,et al.  A review of stimuli-responsive nanocarriers for drug and gene delivery. , 2008, Journal of controlled release : official journal of the Controlled Release Society.

[62]  Choi Narak,et al.  一般化Harvey-Shack表面散乱理論の数値的検証 | 文献情報 | J-GLOBAL 科学技術総合リンクセンター , 2013 .

[63]  O. Farokhzad,et al.  Nanoparticles for Targeted and Temporally Controlled Drug Delivery , 2012 .

[64]  Özgür B. Akan,et al.  On Channel Capacity and Error Compensation in Molecular Communication , 2008, Trans. Comp. Sys. Biology.

[65]  Richard P Van Duyne,et al.  Advances in localized surface plasmon resonance spectroscopy biosensing. , 2011, Nanomedicine.

[66]  L. L. Spada,et al.  Nanoparticle device for biomedical and optoelectronics applications , 2013 .

[67]  Audrey Moores,et al.  The plasmon band in noble metal nanoparticles: an introduction to theory and applications , 2006 .

[68]  Ian F. Akyildiz,et al.  A receiver architecture for pulse-based electromagnetic nanonetworks in the Terahertz Band , 2012, 2012 IEEE International Conference on Communications (ICC).

[69]  Lucio Vegni,et al.  Nanoparticle Electromagnetic Properties for Sensing Applications , 2012 .

[70]  Özgür B. Akan,et al.  On Molecular Multiple-Access, Broadcast, and Relay Channels in Nanonetworks , 2008, BIONETICS.

[71]  Ian F. Akyildiz,et al.  Molecular communication options for long range nanonetworks , 2009, Comput. Networks.

[72]  Ian F. Akyildiz,et al.  Monaco: fundamentals of molecular nano-communication networks , 2012, IEEE Wireless Communications.

[73]  Judit Tulla-Puche,et al.  Polymers and drug delivery systems. , 2012, Current drug delivery.

[74]  Massimiliano Pierobon,et al.  A Molecular Communication System Model for Particulate Drug Delivery Systems , 2013, IEEE Transactions on Biomedical Engineering.

[75]  Hong Liang,et al.  Antibacterial activities of gold and silver nanoparticles against Escherichia coli and bacillus Calmette-Guérin , 2012, Journal of Nanobiotechnology.

[76]  J. Rospars,et al.  Perireceptor and receptor events in olfaction. Comparison of concentration and flux detectors: a modeling study. , 2000, Chemical senses.

[77]  Anil Kumar,et al.  Gold nanoparticles: promising nanomaterials for the diagnosis of cancer and HIV/AIDS , 2011 .

[78]  Lucio Vegni,et al.  Modified Bow-Tie Nanoparticles Operating in the Visible and Near Infrared Frequency Regime , 2013 .

[79]  Chan-Byoung Chae,et al.  Effect of ISI Mitigation on Modulation Techniques in Communication via Diffusion , 2014, ArXiv.

[80]  M. Sastry,et al.  Chitosan Reduced Gold Nanoparticles as Novel Carriers for Transmucosal Delivery of Insulin , 2007, Pharmaceutical Research.

[81]  Qingsong Zhang,et al.  A novel route to prepare pH- and temperature-sensitive nanogels via a semibatch process. , 2009, Journal of colloid and interface science.