Is the transition zone a deep reservoir for fluorine

[1]  B. Marty The origins and concentrations of water, carbon, nitrogen and noble gases on Earth , 2014, 1405.6336.

[2]  S. Surblé,et al.  Clumped fluoride-hydroxyl defects in forsterite: Implications for the upper-mantle , 2014 .

[3]  F. Brenker,et al.  Hydrous mantle transition zone indicated by ringwoodite included within diamond , 2014, Nature.

[4]  M. Roberge,et al.  Infrared signatures of OH-defects in wadsleyite: A first-principles study , 2013 .

[5]  G. Rossman,et al.  Analysis of hydrogen and fluorine in pyroxenes: II. Clinopyroxene , 2013 .

[6]  S. Jacobsen,et al.  Nominally Anhydrous Minerals and Earth's Deep Water Cycle , 2013 .

[7]  M. Hirschmann,et al.  Calibration of infrared spectroscopy by elastic recoil detection analysis of H in synthetic olivine , 2012 .

[8]  T. Gutel,et al.  Nuclear microanalysis of lithium dispersion in LiFePO4 based cathode materials for Li-ion batteries , 2012 .

[9]  C. Vollmer,et al.  Fluorine in nominally fluorine-free mantle minerals: Experimental partitioning of F between olivine, orthopyroxene and silicate melts with implications for magmatic processes , 2012 .

[10]  A. Treiman,et al.  Effect of fluorine on near-liquidus phase equilibria of an Fe–Mg rich basalt , 2012 .

[11]  K. Koga,et al.  Experimental determination of F and Cl partitioning between lherzolite and basaltic melt , 2012, Contributions to Mineralogy and Petrology.

[12]  M. Frische,et al.  Dehydration of subducting serpentinite: Implications for halogen mobility in subduction zones and the deep halogen cycle , 2011 .

[13]  E. Balan,et al.  Theoretical infrared spectrum of OH-defects in forsterite , 2011 .

[14]  A. Somogyi,et al.  Bromine cycle in subduction zones through in situ Br monitoring in diamond anvil cells , 2010 .

[15]  F. Albarède Volatile accretion history of the terrestrial planets and dynamic implications , 2009, Nature.

[16]  D. Pyle,et al.  Halogens in igneous processes and their fluxes to the atmosphere and oceans from volcanic activity: A review , 2009 .

[17]  H. Bureau,et al.  Determination of hydrogen content in geological samples using elastic recoil detection analysis (ERDA) , 2009 .

[18]  R. Stalder,et al.  Hydrogen incorporation in enstatite in the system MgO–SiO2–H2O–NaCl , 2008 .

[19]  H. Bureau,et al.  μ-Erda developments in order to improve the water content determination in hydrous and nominally anhydrous mantle phases , 2008 .

[20]  H. Keppler,et al.  Pressure and temperature-dependence of water solubility in Fe-free wadsleyite , 2005 .

[21]  V. Salters,et al.  Composition of the depleted mantle , 2003 .

[22]  G. Layne,et al.  The systematics of chlorine, fluorine, and water in Izu arc front volcanic rocks: Implications for volatile recycling in subduction zones , 2003 .

[23]  L. Daudin,et al.  Development of “position–charge–time” tagged spectrometry for ion beam microanalysis , 2003 .

[24]  D. Bercovici,et al.  Whole-mantle convection and the transition-zone water filter , 2002, Nature.

[25]  Masayuki Obayashi,et al.  Stagnant slabs in the upper and lower mantle transition region , 2001 .

[26]  E. Berthoumieux,et al.  The Pierre Süe Laboratory nuclear microprobe as a multi-disciplinary analysis tool , 2001 .

[27]  K. Litasov,et al.  Stability of dense hydrous magnesium silicate phases and water storage capacity in the transition zone and lower mantle , 2001 .

[28]  H. Keppler,et al.  Volcanic degassing of bromine and iodine: experimental fluid/melt partitioning data and applications to stratospheric chemistry , 2000 .

[29]  N. Bolfan-Casanova Water partitioning between nominally anhydrous minerals in the MgO–SiO2–H2O system up to 24 GPa: implications for the distribution of water in the Earth’s mantle , 2000 .

[30]  A. P. Jesus,et al.  Excitation function and cross-sections of the reaction 19F(p,p′γ)19F , 2000 .

[31]  B. Wood,et al.  The effect of trace elements on the olivine-wadsleyite transformation , 1998 .

[32]  R. Hazen,et al.  Crystal chemistry of superfluorous phase B (Mg10Si3O14F4); implications for the role of fluorine in the mantle , 1997 .

[33]  G. Dreibus,et al.  Chlorine and bromine abundance in MORB: the contrasting behaviour of the Mid-Atlantic Ridge and East Pacific Rise and implications for chlorine geodynamic cycle , 1995 .

[34]  M. Javoy The integral enstatite chondrite model of the earth , 1995 .

[35]  W. McDonough,et al.  The composition of the Earth , 1995 .

[36]  N. Métrich,et al.  EXPERIMENTAL STUDY OF CHLORINE BEHAVIOR IN HYDROUS SILICIC MELTS , 1992 .

[37]  G. Dreibus,et al.  Iodine abundances in oceanic basalts: implications for Earth dynamics , 1992 .

[38]  N. Métrich,et al.  PIGME fluorine determination using a nuclear microprobe with application to glass inclusions , 1991 .

[39]  S. Peacock Fluid Processes in Subduction Zones , 1990, Science.

[40]  William J. Teesdale,et al.  The Guelph PIXE software package II , 1989 .

[41]  D. Dingwell,et al.  Effects of water and fluorine on the viscosity of albite melt at high pressure: a preliminary investigation , 1985 .

[42]  J. Smith,et al.  Halogen and phosphorus storage in the Earth , 1981, Nature.

[43]  R. Evans,et al.  Halogens in the mantle beneath the North Atlantic , 1980, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[44]  A. E. Ringwood,et al.  A model for the upper mantle , 1962 .

[45]  R. Rudnick,et al.  Composition of the Continental Crust , 2014 .

[46]  H. Keppler,et al.  Partitioning of halogens between mantle minerals and aqueous fluids: implications for the fluid flow regime in subduction zones , 2012, Contributions to Mineralogy and Petrology.

[47]  E. Balan,et al.  Incorporation of water in iron-free ringwoodite: A first-principles study , 2009 .

[48]  P. V. van Aken,et al.  Fe–Mg partitioning between ringwoodite and magnesiowüstite and the effect of pressure, temperature and oxygen fugacity , 2001 .

[49]  M. Mayer,et al.  SIMNRA user's guide , 1997 .