Direct Dearomatization of Pyridines via an Energy-Transfer-Catalyzed Intramolecular [4+2] Cycloaddition

[1]  Weijun Liu,et al.  Facile Diels-Alder reactions with pyridines promoted by tungsten. , 2005, Journal of the American Chemical Society.

[2]  J. Pospech,et al.  Dearomative dihydroxylation with arenophiles. , 2016, Nature chemistry.

[3]  M. Barlow,et al.  Photochemical addition of ethylene to pentafluoropyridine: formation of 1:1- and 2:1-adducts , 1977 .

[4]  Constantin G. Daniliuc,et al.  Discovery of Unforeseen Energy-Transfer-Based Transformations Using a Combined Screening Approach , 2019, Chem.

[5]  C. R. Clark,et al.  Isoquinuclidines: A Review of Chemical and Pharmacological Properties , 2008 .

[6]  E. Meggers,et al.  Polymer-Supported Chiral-at-Metal Lewis Acid Catalysts , 2017 .

[7]  K. Kishikawa,et al.  Intramolecular photo[4+2]cycloaddition of an enone with a benzene ring , 1997 .

[8]  C. Bochet,et al.  Arene-Alkene Cycloaddition. , 2016, Chemical reviews.

[9]  Ernst Peter Kundig,et al.  Transition-metal-mediated dearomatization reactions. , 2000, Chemical reviews.

[10]  Sukbok Chang,et al.  Catalytic Dearomatization of N-Heteroarenes with Silicon and Boron Compounds. , 2017, Angewandte Chemie.

[11]  N. Turro,et al.  Mechanisms of Photochemical Reactions in Solution. XXII.1 Photochemical cis-trans Isomerization , 1964 .

[12]  Ryan Gilmour,et al.  A Bio-Inspired, Catalytic E → Z Isomerization of Activated Olefins. , 2015, Journal of the American Chemical Society.

[13]  S. You,et al.  Direct asymmetric dearomatization of pyridines and pyrazines by iridium-catalyzed allylic amination reactions. , 2014, Angewandte Chemie.

[14]  F. Glorius,et al.  Dearomative Cascade Photocatalysis: Divergent Synthesis through Catalyst Selective Energy Transfer. , 2018, Journal of the American Chemical Society.

[15]  F. Glorius,et al.  The formation of all-cis-(multi)fluorinated piperidines by a dearomatization–hydrogenation process , 2019, Nature Chemistry.

[16]  E. Meggers,et al.  Asymmetric Photocatalysis with Bis-cyclometalated Rhodium Complexes. , 2019, Accounts of chemical research.

[17]  Klaus Harms,et al.  Catalytic Asymmetric Dearomatization by Visible-Light-Activated [2+2] Photocycloaddition. , 2018, Angewandte Chemie.

[18]  Xuezheng Liang,et al.  Vilsmeier–Haack reagent mediated synthetic transformations with an immobilized iridium complex photoredox catalyst , 2019, New Journal of Chemistry.

[19]  David A. Nicewicz,et al.  Organic Photoredox Catalysis. , 2016, Chemical reviews.

[20]  W. Xiao,et al.  Visible-Light-Induced Organic Photochemical Reactions through Energy-Transfer Pathways. , 2018, Angewandte Chemie.

[21]  S. You,et al.  Catalytic Asymmetric Dearomatization by Transition-Metal Catalysis: A Method for Transformations of Aromatic Compounds , 2016 .

[22]  G. Molander,et al.  Preparation of visible-light-activated metal complexes and their use in photoredox/nickel dual catalysis , 2017, Nature Protocols.

[23]  S. You,et al.  Synthesis of Cyclobutane-Fused Angular Tetracyclic Spiroindolines via Visible-Light-Promoted Intramolecular Dearomatization of Indole Derivatives. , 2019, Journal of the American Chemical Society.

[24]  S. You,et al.  Iridium-Catalyzed Intramolecular Asymmetric Allylic Dearomatization Reaction of Pyridines, Pyrazines, Quinolines, and Isoquinolines. , 2015, Journal of the American Chemical Society.

[25]  Eric Meggers,et al.  Asymmetric catalysis activated by visible light. , 2015, Chemical communications.

[26]  J. Pospech,et al.  Synthesis of (+)-Pancratistatins via Catalytic Desymmetrization of Benzene. , 2017, Journal of the American Chemical Society.

[27]  I. Guzei,et al.  Enantioselective photochemistry through Lewis acid–catalyzed triplet energy transfer , 2016, Science.

[28]  Karl Anker Jørgensen,et al.  Cycloaddition reactions in organic synthesis , 2001 .

[29]  Sibasish Paul,et al.  Progress in the Synthesis of Iboga-alkaloids and their Congeners , 2011 .

[30]  K. Houk,et al.  Studies on the Himbert intramolecular arene/allene Diels-Alder cycloaddition. Mechanistic studies and expansion of scope to all-carbon tethers. , 2013, Journal of the American Chemical Society.

[31]  P. Seeberger,et al.  Semi-heterogeneous Dual Nickel/Photocatalysis using Carbon Nitrides: Esterification of Carboxylic Acids with Aryl Halides. , 2019, Angewandte Chemie.

[32]  A. S. Dudnik,et al.  Atom-efficient regioselective 1,2-dearomatization of functionalized pyridines by an earth-abundant organolanthanide catalyst , 2014, Nature Chemistry.

[33]  Jonathan L. Brosmer,et al.  Intramolecular Crossed [2+2] Photocycloaddition through Visible Light-Induced Energy Transfer. , 2017, Journal of the American Chemical Society.

[34]  T. Bach,et al.  Recent Advances in the Synthesis of Cyclobutanes by Olefin [2 + 2] Photocycloaddition Reactions , 2016, Chemical reviews.

[35]  D. Sarlah,et al.  Recent advances in chemical dearomatization of nonactivated arenes. , 2018, Chemical Society reviews.

[36]  D. MacMillan,et al.  Visible light photoredox catalysis with transition metal complexes: applications in organic synthesis. , 2013, Chemical reviews.

[37]  John Meurig Thomas Principles and practice of heterogeneous catalysis , 1996 .

[38]  R. Webster,et al.  Direct Visible-Light-Excited Asymmetric Lewis Acid Catalysis of Intermolecular [2+2] Photocycloadditions. , 2017, Journal of the American Chemical Society.

[39]  J. Porco,et al.  Dearomatization strategies in the synthesis of complex natural products. , 2011, Angewandte Chemie.

[40]  Frank Glorius,et al.  Energy transfer catalysis mediated by visible light: principles, applications, directions. , 2018, Chemical Society reviews.