Experimental realization of an optical second with strontium lattice clocks

[1]  S. Bize,et al.  Correction: Corrigendum: Experimental realization of an optical second with strontium lattice clocks , 2013, Nature Communications.

[2]  Zichao Zhou,et al.  88Sr+ 445-THz single-ion reference at the 10(-17) level via control and cancellation of systematic uncertainties and its measurement against the SI second. , 2012, Physical review letters.

[3]  Charles W. Clark,et al.  Blackbody-radiation shift in the Sr optical atomic clock , 2012, 1210.7272.

[4]  J. Ye,et al.  Comparison of two independent Sr optical clocks with 1×10(-17) stability at 10(3) s. , 2012, Physical review letters.

[5]  P. Jetzer,et al.  Geophysical applicability of atomic clocks: direct continental geoid mapping , 2012, 1209.2889.

[6]  Uwe Sterr,et al.  High accuracy correction of blackbody radiation shift in an optical lattice clock. , 2012, Physical review letters.

[7]  S. Falke,et al.  Providing $10^{-16}$ Short-Term Stability of a 1.5-$\mu\hbox{m}$ Laser to Optical Clocks , 2012, IEEE Transactions on Instrumentation and Measurement.

[8]  C. Clark,et al.  Ytterbium in quantum gases and atomic clocks: van der Waals interactions and blackbody shifts. , 2012, Physical Review Letters.

[9]  N. Hinkley,et al.  Determination of the 5d6s3D1 State Lifetime and Blackbody Radiation Clock Shift in Yb , 2012, 1208.0552.

[10]  Christian Chardonnet,et al.  Ultra-stable long distance optical frequency distribution using the Internet fiber network and application to high-precision molecular spectroscopy , 2012, Optics express.

[11]  Michael E. Tobar,et al.  Improved Tests of Local Position Invariance Using Rb-87 and Cs-133 Fountains , 2012, 1205.4235.

[12]  T. Hänsch,et al.  A 920-Kilometer Optical Fiber Link for Frequency Metrology at the 19th Decimal Place , 2012, Science.

[13]  J. Guéna,et al.  Progress in atomic fountains at LNE-SYRTE , 2012, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[14]  Michael T. Murphy,et al.  Spatial variation in the fine-structure constant – new results from VLT/UVES , 2012, 1202.4758.

[15]  Y. Li,et al.  Stability Transfer between Two Clock Lasers Operating at Different Wavelengths for Absolute Frequency Measurement of Clock Transition in 87Sr , 2012, 1201.3159.

[16]  Lei Chen,et al.  A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity , 2011, Nature Photonics.

[17]  C W Oates,et al.  High-accuracy measurement of atomic polarizability in an optical lattice clock. , 2011, Physical review letters.

[18]  M. Okhapkin,et al.  High-accuracy optical clock based on the octupole transition in 171Yb+. , 2011, Physical review letters.

[19]  P. Lemonde,et al.  Observation and cancellation of a perturbing dc stark shift in strontium optical lattice clocks , 2011, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[20]  Ying Li,et al.  Direct Comparison of Distant Optical Lattice Clocks at the 10-16 Uncertainty , 2011, 1108.2774.

[21]  Lars Rippe,et al.  Frequency stabilization to 6 [times] 10-16 via spectral-hole burning , 2011, 1106.0520.

[22]  C W Oates,et al.  p-Wave cold collisions in an optical lattice clock. , 2011, Physical review letters.

[23]  Hidetoshi Katori,et al.  Frequency comparison of optical lattice clocks beyond the Dick limit , 2011 .

[24]  H. Schnatz,et al.  The 87Sr optical frequency standard at PTB , 2011, 1104.4850.

[25]  E. Burt,et al.  Lattice-induced frequency shifts in Sr optical lattice clocks at the 10(-17) level. , 2011, Physical review letters.

[26]  A. Ludlow,et al.  Making optical atomic clocks more stable with 10-16-level laser stabilization , 2011, 1101.1351.

[27]  Jun Ye,et al.  Suppression of Collisional Shifts in a Strongly Interacting Lattice Clock , 2010, Science.

[28]  Thomas E. Parker,et al.  Long-term comparison of caesium fountain primary frequency standards , 2010 .

[29]  D. Wineland,et al.  Frequency comparison of two high-accuracy Al+ optical clocks. , 2009, Physical review letters.

[30]  K. Gibble Decoherence and collisional frequency shifts of trapped bosons and fermions. , 2009, Physical review letters.

[31]  C W Oates,et al.  Spin-1/2 optical lattice clock. , 2009, Physical review letters.

[32]  J. Lodewyck,et al.  Nondestructive measurement of the transition probability in a Sr optical lattice clock , 2009, 0902.2905.

[33]  A. Clairon,et al.  Ultralow noise microwave generation with fiber-based optical frequency comb and application to atomic fountain clock , 2009, 0901.3654.

[34]  H. Inaba,et al.  Measuring the frequency of a Sr optical lattice clock using a 120 km coherent optical transfer. , 2008, Optics letters.

[35]  Gesine Grosche,et al.  The Stability of an Optical Clock Laser Transferred to the Interrogation Oscillator for a Cs Fountain , 2008, IEEE Transactions on Instrumentation and Measurement.

[36]  Jun Ye,et al.  Quantum State Engineering and Precision Metrology Using State-Insensitive Light Traps , 2008, Science.

[37]  D. Wineland,et al.  Frequency Ratio of Al+ and Hg+ Single-Ion Optical Clocks; Metrology at the 17th Decimal Place , 2008, Science.

[38]  Sergei A. Klioner,et al.  Geodesy and relativity , 2008 .

[39]  Jun Ye,et al.  Sr Lattice Clock at 1 × 10–16 Fractional Uncertainty by Remote Optical Evaluation with a Ca Clock , 2008, Science.

[40]  T Zelevinsky,et al.  New limits on coupling of fundamental constants to gravity using 87Sr optical lattice clocks. , 2008, Physical review letters.

[41]  N. Newbury,et al.  Coherent transfer of an optical carrier over 251 km. , 2007, Optics letters.

[42]  John L. Hall,et al.  Nobel Lecture: Defining and measuring optical frequencies , 2006 .

[43]  T. Hänsch Nobel Lecture: Passion for precision* , 2006 .

[44]  P. Lemonde,et al.  Accurate optical lattice clock with 87Sr atoms. , 2006, Physical Review Letters.

[45]  John L. Hall,et al.  Defining and Measuring Optical Frequencies , 2006 .

[46]  S. Porsev,et al.  Multipolar theory of blackbody radiation shift of atomic energy levels and its implications for optical lattice clocks , 2006, physics/0602082.

[47]  Novosibirsk,et al.  Direct excitation of the forbidden clock transition in neutral 174Yb atoms confined to an optical lattice. , 2005, Physical review letters.

[48]  Jun Ye,et al.  Systematic study of the 87Srclock transition in an optical lattice. , 2005, Physical review letters.

[49]  M. Takamoto,et al.  An optical lattice clock , 2005, Nature.

[50]  M. Takamoto,et al.  Ultrastable optical clock with neutral atoms in an engineered light shift trap. , 2003, Physical review letters.

[51]  Wayne M. Itano,et al.  Shift of 2 S 12 hyperfine splittings due to blackbody radiation , 1982 .

[52]  Wm. Markowitz,et al.  Frequency of Cesium in Terms of Ephemeris Time , 1958 .

[53]  J. Guéna,et al.  Improved tests of local position invariance using 87Rb and 133Cs fountains. , 2012, Physical review letters.

[54]  Lars Rippe,et al.  Frequency stabilization to 6 3 10 216 via spectral-hole burning , 2011 .

[55]  Patrick Siarry,et al.  A postural information based biometric authentification system employing S-transform, radial basis network and Kalman filtering , 2010 .

[56]  Hänsch W. Treodor PASSION FOR PRECISION , 2008 .