Full field tabletop EUV coherent diffractive imaging in a transmission geometry.

We demonstrate the first general tabletop EUV coherent microscope that can image extended, non-isolated, non-periodic, objects. By implementing keyhole coherent diffractive imaging with curved mirrors and a tabletop high harmonic source, we achieve improved efficiency of the imaging system as well as more uniform illumination at the sample, when compared with what is possible using Fresnel zone plates. Moreover, we show that the unscattered light from a semi-transparent sample can be used as a holographic reference wave, allowing quantitative information about the thickness of the sample to be extracted from the retrieved image. Finally, we show that excellent tabletop image fidelity is achieved by comparing the retrieved images with scanning electron and atomic force microscopy images, and show superior capabilities in some cases.

[1]  D. Malacara-Hernández,et al.  PRINCIPLES OF OPTICS , 2011 .

[2]  J. Goodman Introduction to Fourier optics , 1969 .

[3]  I. Robinson,et al.  Reconstruction of the shapes of gold nanocrystals using coherent x-ray diffraction. , 2001, Physical review letters.

[4]  Veit Elser Phase retrieval by iterated projections. , 2003, Journal of the Optical Society of America. A, Optics, image science, and vision.

[5]  J. Rodenburg,et al.  Ptychographic electron microscopy using high-angle dark-field scattering for sub-nanometre resolution imaging , 2012, Nature Communications.

[6]  Randy A. Bartels,et al.  Generation of Spatially Coherent Light at Extreme Ultraviolet Wavelengths , 2002, Science.

[7]  Ashish Tripathi,et al.  Dichroic coherent diffractive imaging , 2011, Proceedings of the National Academy of Sciences.

[8]  J. Miao,et al.  Extending X-ray crystallography to allow the imaging of noncrystalline materials, cells, and single protein complexes. , 2008, Annual review of physical chemistry.

[9]  R G Paxman,et al.  Phase retrieval from experimental far-field speckle data. , 1988, Optics letters.

[10]  H M Quiney,et al.  Iterative image reconstruction algorithms using wave-front intensity and phase variation. , 2005, Optics letters.

[11]  D. R. Luke Relaxed averaged alternating reflections for diffraction imaging , 2004, math/0405208.

[12]  M M Murnane,et al.  Tabletop soft-x-ray Fourier transform holography with 50 nm resolution. , 2009, Optics letters.

[13]  Garth J. Williams,et al.  Diffractive imaging using a polychromatic high-harmonic generation soft-x-ray source , 2009 .

[14]  D. Gabor A New Microscopic Principle , 1948, Nature.

[15]  J. Miao,et al.  Ultrahigh 22 nm resolution coherent diffractive imaging using a desktop 13 nm high harmonic source. , 2011, Optics express.

[16]  O. Bunk,et al.  High-Resolution Scanning X-ray Diffraction Microscopy , 2008, Science.

[17]  D. R. Luke Relaxed Averaged Alternating Reflections for Diffraction Imaging , 2004, math/0405208.

[18]  A. Paul,et al.  Absolute determination of the wavelength and spectrum of an extreme-ultraviolet beam by a Young's double-slit measurement. , 2002, Optics letters.

[19]  M. Murnane,et al.  Bright Coherent Ultrahigh Harmonics in the keV X-ray Regime from Mid-Infrared Femtosecond Lasers , 2012, Science.

[20]  J. Miao,et al.  High numerical aperture tabletop soft x-ray diffraction microscopy with 70-nm resolution , 2008, Proceedings of the National Academy of Sciences.

[21]  W. H. Benner,et al.  Femtosecond diffractive imaging with a soft-X-ray free-electron laser , 2006, physics/0610044.

[22]  Janos Kirz,et al.  Phase zone plates for x rays and the extreme uv , 1974 .

[23]  J. Miao,et al.  Phase retrieval from the magnitude of the Fourier transforms of nonperiodic objects , 1998 .

[24]  I. Robinson,et al.  Three-dimensional imaging of microstructure in Au nanocrystals. , 2003, Physical review letters.

[25]  M. Howells,et al.  Coherence and sampling requirements for diffractive imaging. , 2004, Ultramicroscopy.

[26]  S. Marchesini,et al.  X-ray image reconstruction from a diffraction pattern alone , 2003, physics/0306174.

[27]  Fulvio Parmigiani,et al.  Probing Thermomechanics at the Nanoscale: Impulsively Excited Pseudosurface Acoustic Waves in Hypersonic Phononic Crystals , 2011, Nano letters.

[28]  D. Paterson,et al.  Diffractive imaging of highly focused X-ray fields , 2006 .

[29]  J. Zuo,et al.  Atomic Resolution Imaging of a Carbon Nanotube from Diffraction Intensities , 2003, Science.

[30]  Ian McNulty,et al.  Dynamic sample imaging in coherent diffractive imaging. , 2011, Optics letters.

[31]  Keith A. Nugent,et al.  Quantitative coherent diffractive imaging of an integrated circuit at a spatial resolution of 20 nm , 2008 .

[32]  Ronggui Yang,et al.  Quasi-ballistic thermal transport from nanoscale interfaces observed using ultrafast coherent soft X-ray beams. , 2010, Nature materials.

[33]  U Weierstall,et al.  Image reconstruction from electron and X-ray diffraction patterns using iterative algorithms: experiment and simulation. , 2002, Ultramicroscopy.

[34]  Ian A. Meinertzhagen,et al.  Digital in-line holography with photons and electrons , 2001 .

[35]  Garth J. Williams,et al.  Three-dimensional mapping of a deformation field inside a nanocrystal , 2006, Nature.

[36]  M. D. de Jonge,et al.  Fresnel coherent diffractive imaging. , 2006, Physical review letters.

[37]  Keith A. Nugent,et al.  Coherent lensless X-ray imaging , 2010 .

[38]  J. Miao,et al.  Extending the methodology of X-ray crystallography to allow imaging of micrometre-sized non-crystalline specimens , 1999, Nature.

[39]  Denis Joyeux,et al.  Iterative algorithms for twin-image elimination in in-line holography using finite-support constraints , 1993 .

[40]  P. Fischer,et al.  Studying Nanoscale Magnetism and Its Dynamics With Soft X-Ray Microscopy , 2008, IEEE Transactions on Magnetics.

[41]  M. Murnane,et al.  Phase-matched generation of coherent soft X-rays , 1998, Science.

[42]  J R Fienup,et al.  Phase retrieval algorithms: a comparison. , 1982, Applied optics.

[43]  Qing Li,et al.  Quasi-ballistic thermal transport from nanoscale interfaces observed using ultrafast coherent soft x-ray beams , 2011, OPTO.

[44]  S. Hädrich,et al.  Lensless diffractive imaging using tabletop coherent high-harmonic soft-X-ray beams. , 2007, Physical review letters.

[45]  Justin M. Shaw,et al.  Probing the timescale of the exchange interaction in a ferromagnetic alloy , 2012, Proceedings of the National Academy of Sciences.

[46]  Garth J. Williams,et al.  Keyhole coherent diffractive imaging , 2008 .

[47]  A. G. Cullis,et al.  Hard-x-ray lensless imaging of extended objects. , 2007, Physical review letters.

[48]  J. Kirz,et al.  Biological imaging by soft x-ray diffraction microscopy , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[49]  Farhad Salmassi,et al.  High numerical aperture reflection mode coherent diffraction microscopy using off-axis apertured illumination. , 2012, Optics express.

[50]  Leigh S. Martin,et al.  A generalization for optimized phase retrieval algorithms. , 2012, Optics express.