GABA(B) receptors inhibit dendrodendritic transmission in the rat olfactory bulb.

In the mammalian olfactory bulb, mitral cell dendrites release glutamate onto the dendritic spines of granule cells, which in turn release GABA back onto mitral dendrites. This local synaptic circuit forms the basis for reciprocal dendrodendritic inhibition mediated by ionotropic GABA(A) receptors in mitral cells. Surprisingly little is known about neurotransmitter modulation of dendrodendritic signaling in the olfactory bulb. In this study, we examine whether metabotropic GABA(B) receptors modulate dendrodendritic signaling between mitral and granule cells. We find that the selective GABA(B) agonist baclofen reduces mitral cell recurrent inhibition mediated by dendrodendritic synapses. GABA(B) receptor activation causes only a weak inhibition of field EPSCs in the external plexiform layer and only slightly reduces glutamate-mediated mitral cell self-excitation. Although GABA(B) receptors depress mitral cell glutamate release only weakly, baclofen causes a marked reduction in the amplitude of granule-cell-evoked, GABA(A)-mediated IPSCs in mitral cells. In addition to reducing the amplitude of granule-cell-evoked IPSCs, baclofen causes a change from paired-pulse depression to paired-pulse facilitation, suggesting that GABA(B) receptors modulate GABA release from granule cells. To explore the mechanism of action of GABA(B) receptors further, we show that baclofen inhibits high-voltage-activated calcium currents in granule cells. Together, these findings suggest that GABA(B) receptors modulate dendrodendritic inhibition primarily by inhibiting granule cell calcium channels and reducing the release of GABA. Furthermore, we show that endogenous GABA regulates the strength of dendrodendritic inhibition via the activation of GABA(B) autoreceptors.

[1]  B. Strowbridge,et al.  Calcium Influx through NMDA Receptors Directly Evokes GABA Release in Olfactory Bulb Granule Cells , 2000, The Journal of Neuroscience.

[2]  R. Gervais,et al.  Cholinergic modulation of excitability in the rat olfactory bulb: Effect of local application of cholinergic agents on evoked field potentials , 1991, Neuroscience.

[3]  J. Vincent,et al.  Dopamine depresses synaptic inputs into the olfactory bulb. , 1999, Journal of neurophysiology.

[4]  G. Westbrook,et al.  Dendrodendritic Inhibition in the Olfactory Bulb Is Driven by NMDA Receptors , 1998, The Journal of Neuroscience.

[5]  B. Bean Neurotransmitter inhibition of neuronal calcium currents by changes in channel voltage dependence , 1989, Nature.

[6]  P. Duchamp-Viret,et al.  GABAB receptor-mediated inhibition of mitral/tufted cell activity in the rat olfactory bulb: a whole-cell patch-clamp study in vitro , 2002, Neuroscience.

[7]  J. Isaacson,et al.  GABA(B)-mediated presynaptic inhibition of excitatory transmission and synaptic vesicle dynamics in cultured hippocampal neurons. , 1997, Neuron.

[8]  O. Ottersen,et al.  Organization of Ionotropic Glutamate Receptors at Dendrodendritic Synapses in the Rat Olfactory Bulb , 2000, The Journal of Neuroscience.

[9]  L. Trussell,et al.  Enhancement of Synaptic Efficacy by Presynaptic GABAB Receptors , 1998, Neuron.

[10]  U. Misgeld,et al.  A physiological role for GABAB receptors and the effects of baclofen in the mammalian central nervous system , 1995, Progress in Neurobiology.

[11]  Wei R. Chen,et al.  Dynamic Gating of Spike Propagation in the Mitral Cell Lateral Dendrites , 2002, Neuron.

[12]  S. Langer,et al.  Presynaptic receptors , 1978, Nature.

[13]  M. T. Shipley,et al.  Tonic and synaptically evoked presynaptic inhibition of sensory input to the rat olfactory bulb via GABA(B) heteroreceptors. , 2000, Journal of neurophysiology.

[14]  Paul Antoine Salin,et al.  Use-dependent increases in glutamate concentration activate presynaptic metabotropic glutamate receptors , 1997, Nature.

[15]  K. Mori,et al.  The olfactory bulb: coding and processing of odor molecule information. , 1999, Science.

[16]  J. Isaacson Glutamate Spillover Mediates Excitatory Transmission in the Rat Olfactory Bulb , 1999, Neuron.

[17]  M. T. Shipley,et al.  Current-source density analysis in the rat olfactory bulb: laminar distribution of kainate/AMPA- and NMDA-receptor-mediated currents. , 1999, Journal of neurophysiology.

[18]  D. Friedman,et al.  Functional role of NMDA autoreceptors in olfactory mitral cells. , 2000, Journal of neurophysiology.

[19]  R. Nicoll,et al.  Dendrodendritic inhibition: demonstration with intracellular recording. , 1980, Science.

[20]  M. T. Shipley,et al.  Dopamine D2 receptor-mediated presynaptic inhibition of olfactory nerve terminals. , 2001, Journal of neurophysiology.

[21]  J. Isaacson,et al.  Olfactory Reciprocal Synapses: Dendritic Signaling in the CNS , 1998, Neuron.

[22]  W. Regehr,et al.  Short-term synaptic plasticity. , 2002, Annual review of physiology.

[23]  B. Walmsley,et al.  Amplitude and time course of spontaneous and evoked excitatory postsynaptic currents in bushy cells of the anteroventral cochlear nucleus. , 1996, Journal of neurophysiology.

[24]  G. Shepherd,et al.  Analysis of Relations between NMDA Receptors and GABA Release at Olfactory Bulb Reciprocal Synapses , 2000, Neuron.

[25]  R. Nicoll,et al.  Noradrenergic modulation of dendrodendritic inhibition in the olfactory bulb , 1982, Nature.

[26]  D. Wilson,et al.  Noradrenergic modulation of olfactory bulb excitability in the postnatal rat. , 1988, Brain research.

[27]  G. Laurent A systems perspective on early olfactory coding. , 1999, Science.

[28]  Jeffry S. Isaacson,et al.  Mechanisms governing dendritic γ-aminobutyric acid (GABA) release in the rat olfactory bulb , 2001 .

[29]  Christian Lüscher,et al.  G Protein-Coupled Inwardly Rectifying K+ Channels (GIRKs) Mediate Postsynaptic but Not Presynaptic Transmitter Actions in Hippocampal Neurons , 1997, Neuron.

[30]  D. Johnston,et al.  Multiple Channel Types Contribute to the Low-Voltage-Activated Calcium Current in Hippocampal CA3 Pyramidal Neurons , 1996, The Journal of Neuroscience.

[31]  S. Nakanishi,et al.  Role of a metabotropic glutamate receptor in synaptic modulation in the accessory olfactory bulb , 1993, Nature.

[32]  P. Sterling The Synaptic Organization of the Brain , 1998 .

[33]  P A Salin,et al.  Dendritic glutamate autoreceptors modulate signal processing in rat mitral cells. , 2001, Journal of neurophysiology.

[34]  H. Kaba,et al.  The biphasic effects of locus coeruleus noradrenergic activation on dendrodendritic inhibition in the rat olfactory bulb , 1998, Brain Research.

[35]  Bert Sakmann,et al.  Reciprocal intraglomerular excitation and intra‐ and interglomerular lateral inhibition between mouse olfactory bulb mitral cells , 2002, The Journal of physiology.

[36]  A. Keller,et al.  Functional Organization of Rat Olfactory Bulb Glomeruli Revealed by Optical Imaging , 1998, The Journal of Neuroscience.

[37]  Gordon M. Shepherd,et al.  The Olfactory Bulb , 1988 .

[38]  S. Nakanishi,et al.  Refinement of odor molecule tuning by dendrodendritic synaptic inhibition in the olfactory bulb. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[39]  W. A. Wilson,et al.  Temporally distinct mechanisms of use-dependent depression at inhibitory synapses in the rat hippocampus in vitro. , 1994, Journal of neurophysiology.

[40]  G. Shepherd,et al.  GABAergic mechanisms of dendrodendritic synapses in isolated turtle olfactory bulb. , 1981, Journal of neurophysiology.

[41]  V. Meskenaite,et al.  GABAB‐receptor splice variants GB1a and GB1b in rat brain: developmental regulation, cellular distribution and extrasynaptic localization , 1999, The European journal of neuroscience.

[42]  O. Paulsen,et al.  Expression and distribution of metabotropic GABA receptor subtypes GABABR1 and GABABR2 during rat neocortical development , 2002, The European journal of neuroscience.

[43]  B. Bean,et al.  GABAB Receptor-Activated Inwardly Rectifying Potassium Current in Dissociated Hippocampal CA3 Neurons , 1996, The Journal of Neuroscience.

[44]  J. Isaacson,et al.  Mechanisms governing dendritic gamma-aminobutyric acid (GABA) release in the rat olfactory bulb. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[45]  J. Isaacson,et al.  GABAB receptor-mediated modulation of presynaptic currents and excitatory transmission at a fast central synapse. , 1998, Journal of neurophysiology.

[46]  G. Westbrook,et al.  Regulation of synaptic timing in the olfactory bulb by an A-type potassium current , 1999, Nature Neuroscience.

[47]  K. Mori,et al.  An intracellular study of dendrodendritic inhibitory synapses on mitral cells in the rabbit olfactory bulb. , 1978, The Journal of physiology.

[48]  WG Regehr,et al.  Contributions of calcium-dependent and calcium-independent mechanisms to presynaptic inhibition at a cerebellar synapse , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[49]  M. Mayer,et al.  Structural determinants of allosteric regulation in alternatively spliced AMPA receptors , 1995, Neuron.

[50]  R. Nicoll,et al.  Self-excitation of olfactory bulb neurones , 1982, Nature.

[51]  J. Ruppersberg Ion Channels in Excitable Membranes , 1996 .

[52]  B. Gähwiler,et al.  Presynaptic inhibition of miniature excitatory synaptic currents by baclofen and adenosine in the hippocampus , 1992, Neuron.

[53]  R. Nicoll,et al.  A physiological role for GABAB receptors in the central nervous system , 1988, Nature.