Mechanical properties of Graphene: Molecular dynamics simulations correlated to continuum based scaling laws

In this paper, the combined effect of domain size, lattice orientation and crack length on the mechanical properties of Graphene, namely the yield strength and strain, are studied extensively based on molecular dynamics simulations. Numerical predictions are compared with the continuum- based laws of size effect and multifractal scaling. The yield strength is found to vary with the specimen size as approximate to L-1/3, which is in agreement with the multifractal scaling law, and with the inverse square of the initial crack length as approximate to a(0)(1/2), according to the Griffith's energy criterion for fracture. (C) 2016 Elsevier B.V. All rights reserved.

[1]  Brahmanandam Javvaji,et al.  Chemical-free graphene by unzipping carbon nanotubes using cryo-milling , 2015 .

[2]  Ke-wei Xu,et al.  Size-dependent deformation behavior of nanocrystalline graphene sheets , 2015 .

[3]  I..,et al.  The Phenomena of Rupture and Flow in Solids , 2011 .

[4]  Xuechao Yu,et al.  Photocurrent generation in lateral graphene p-n junction created by electron-beam irradiation , 2015, Scientific Reports.

[5]  Pietro Cornetti,et al.  A fractional calculus approach to the description of stress and strain localization in fractal media , 2002 .

[6]  D. Roy Mahapatra,et al.  Vibration analysis of multi-walled carbon nanotubes embedded in elastic medium , 2014 .

[7]  Alberto Carpinteri,et al.  Size effects on nominal tensile strength of concrete structures: multifractality of material ligaments and dimensional transition from order to disorder , 1995 .

[8]  Yi Cui,et al.  Strengthening effect of single-atomic-layer graphene in metal–graphene nanolayered composites , 2013, Nature Communications.

[9]  T. Rabczuk,et al.  Molecular dynamics/xfem coupling by a three-dimensional extended bridging domain with applications to dynamic brittle fracture , 2013 .

[10]  C. Jin,et al.  Deriving carbon atomic chains from graphene. , 2009, Physical review letters.

[11]  A. Morpurgo The ABC of 2D materials , 2015, Nature Physics.

[12]  Alberto Carpinteri,et al.  Fractal nature of material microstructure and size effects on apparent mechanical properties , 1994 .

[13]  Heng Zhang,et al.  Estimation of fracture toughness, driving force, and fracture energy for fractal cracks using the method of imaginary smooth crack , 2010 .

[14]  K. Volokh On the Strength of Graphene , 2012 .

[15]  F. ASCE,et al.  SIZE EFFECT IN BLUNT FRACTURE: CONCRETE, , 2005 .

[16]  G. Vignoles,et al.  On the prediction of graphene’s elastic properties with reactive empirical bond order potentials , 2015 .

[17]  Alberto Carpinteri,et al.  A fractal approach to indentation size effect , 2006 .

[18]  Y. Mai,et al.  Temperature and strain-rate dependent fracture strength of graphynes , 2014 .

[19]  Qiang Yu,et al.  Universal Size Effect Law and Effect of Crack Depth on Quasi-Brittle Structure Strength , 2009 .

[20]  W. G. McMillan,et al.  The Virial Theorem , 2007 .

[21]  A. A. Griffith The Phenomena of Rupture and Flow in Solids , 1921 .

[22]  Yongping Zheng,et al.  A molecular dynamics investigation of the mechanical properties of graphene nanochains , 2012, 1212.2280.

[23]  Pietro Cornetti,et al.  A scale-invariant cohesive crack model for quasi-brittle materials , 2002 .

[24]  P. Rutkowski,et al.  Fracture toughness of hot-pressed Si3N4-graphene composites , 2014 .

[25]  Yunfei Chen,et al.  Atomistic simulations of mechanical properties of graphene nanoribbons , 2009 .

[26]  Alberto Carpinteri,et al.  Fractal and multifractal approaches for the analysis of crack-size dependent scaling laws in fatigue , 2009 .

[27]  Timon Rabczuk,et al.  A computational library for multiscale modeling of material failure , 2013, Computational Mechanics.

[28]  Zdeněk P. Bažant,et al.  Size effect aspects of measurement of fracture characteristics of quasibrittle material , 1996 .

[29]  N. Aluru,et al.  Size and chirality dependent elastic properties of graphene nanoribbons under uniaxial tension. , 2009, Nano letters.

[30]  Rhys Jones,et al.  From NASGRO to fractals: Representing crack growth in metals , 2016 .

[31]  M. Dewapriya,et al.  Molecular Dynamics Simulations and Continuum Modeling of Temperature and Strain Rate Dependent Fracture Strength of Graphene With Vacancy Defects , 2014 .

[32]  B. Shi,et al.  Binary Synergy Strengthening and Toughening of Bio-Inspired Nacre-like Graphene Oxide/Sodium Alginate Composite Paper. , 2015, ACS nano.

[33]  Juekuan Yang,et al.  Defect-Engineered Heat Transport in Graphene: A Route to High Efficient Thermal Rectification , 2015, Scientific Reports.

[34]  Jian-Gang Guo,et al.  An experimental investigation on the tangential interfacial properties of graphene: Size effect , 2015 .

[35]  Siby Thomas,et al.  Molecular Dynamics Simulation of the Thermo-mechanical Properties of Monolayer Graphene Sheet☆ , 2014 .

[36]  Pablo A Denis,et al.  Mechanical properties of graphene nanoribbons , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[37]  Z. Bažant,et al.  Size effect tests and fracture characteristics of aluminum , 1987 .

[38]  S. Puzzi,et al.  Scaling Laws and Multiscale Approach in the Mechanics of Heterogeneous and Disordered Materials , 2006 .

[39]  Zdenek P. Bazant,et al.  Size Effect and Fracture Characteristics of Composite Laminates , 1996 .

[40]  J. Tersoff,et al.  Modeling solid-state chemistry: Interatomic potentials for multicomponent systems. , 1989, Physical review. B, Condensed matter.

[41]  T. Zhu,et al.  Griffith criterion for brittle fracture in graphene. , 2015, Nano letters.

[42]  Timon Rabczuk,et al.  Concurrent multiscale modeling of three dimensional crack and dislocation propagation , 2015, Adv. Eng. Softw..

[43]  Timon Rabczuk,et al.  Lattice orientation and crack size effect on the mechanical properties of Graphene , 2016, International Journal of Fracture.

[44]  Timon Rabczuk,et al.  Efficient coarse graining in multiscale modeling of fracture , 2014 .

[45]  S. K. Georgantzinos,et al.  Mechanical properties of graphene nanocomposites: A multiscale finite element prediction , 2015 .

[46]  SUPARNA DUTTASINHA,et al.  Graphene: Status and Prospects , 2009, Science.

[47]  Kostas Kostarelos,et al.  Graphene devices for life. , 2014, Nature nanotechnology.

[48]  Z. Bažant Size Effect in Blunt Fracture: Concrete, Rock, Metal , 1984 .

[49]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[50]  A. Carpinteri Scaling laws and renormalization groups for strength and toughness of disordered materials , 1994 .

[51]  Timon Rabczuk,et al.  Crack propagation in graphene , 2015 .

[52]  S. K. Georgantzinos,et al.  Size-dependent non-linear mechanical properties of graphene nanoribbons , 2011 .

[53]  C. Basaran,et al.  The size effect in mechanical properties of finite-sized graphene nanoribbon , 2014 .

[54]  Timon Rabczuk,et al.  An adaptive multiscale method for quasi-static crack growth , 2014 .

[55]  Wei Gao,et al.  Atomistic simulation and continuum modeling of graphene nanoribbons under uniaxial tension , 2011 .

[56]  Mechanical properties of graphene papers , 2011, 1105.0138.

[57]  S. Montgomery-Smith,et al.  Improved material point method for simulating the zona failure response in piezo-assisted intracytoplasmic sperm injection , 2011 .

[58]  Huajian Gao,et al.  Fracture of graphene: a review , 2015, International Journal of Fracture.

[59]  Vivek B Shenoy,et al.  Anomalous Strength Characteristics of Tilt Grain Boundaries in Graphene , 2010, Science.

[60]  W. Regan,et al.  Ripping graphene: preferred directions. , 2012, Nano letters.

[61]  P. Ming,et al.  Ab initio calculation of ideal strength and phonon instability of graphene under tension , 2007 .

[62]  Zdenek P. Bazant,et al.  Scaling of structural failure , 1997 .

[63]  M. Dewapriya,et al.  Atomistic and continuum modelling of temperature-dependent fracture of graphene , 2014, International Journal of Fracture.

[64]  W. C. Swope,et al.  A computer simulation method for the calculation of equilibrium constants for the formation of physi , 1981 .

[65]  Arun K. Subramaniyan,et al.  Continuum interpretation of virial stress in molecular simulations , 2008 .

[66]  Z. Bažant,et al.  Response to A. Carpinteri, B. Chiaia, P. Cornetti and S. Puzzi's Comments on "Is the cause of size effect on structural strength fractal or energetic-statistical?" , 2007 .

[67]  Yunping Xi,et al.  Statistical Size Effect in Quasi‐Brittle Structures: II. Nonlocal Theory , 1991 .

[68]  Steve Plimpton,et al.  Fast parallel algorithms for short-range molecular dynamics , 1993 .

[69]  Huijuan Zhao,et al.  Temperature and strain-rate dependent fracture strength of graphene , 2010 .

[70]  A. Omeltchenko,et al.  Atomistic modeling of the fracture of polycrystalline diamond , 2000 .

[71]  V. Shenoy,et al.  Effect of crack length and orientation on the mixed-mode fracture behavior of graphene , 2015 .

[72]  J. Kysar,et al.  Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene , 2008, Science.

[73]  F. Ma,et al.  Size Dependent Mechanical Properties of Graphene Nanoribbons: Molecular Dynamics Simulation , 2013 .