Liouville quantum gravity and KPZ

AbstractConsider a bounded planar domain D, an instance h of the Gaussian free field on D, with Dirichlet energy (2π)−1∫D∇h(z)⋅∇h(z)dz, and a constant 0≤γ<2. The Liouville quantum gravity measure on D is the weak limit as ε→0 of the measures $$\varepsilon^{\gamma^2/2} e^{\gamma h_\varepsilon(z)}dz,$$ where dz is Lebesgue measure on D and hε(z) denotes the mean value of h on the circle of radius ε centered at z. Given a random (or deterministic) subset X of D one can define the scaling dimension of X using either Lebesgue measure or this random measure. We derive a general quadratic relation between these two dimensions, which we view as a probabilistic formulation of the Knizhnik, Polyakov, Zamolodchikov (Mod. Phys. Lett. A, 3:819–826, 1988) relation from conformal field theory. We also present a boundary analog of KPZ (for subsets of ∂D). We discuss the connection between discrete and continuum quantum gravity and provide a framework for understanding Euclidean scaling exponents via quantum gravity.

[1]  Boundary Correlators in 2D Quantum Gravity: Liouville versus Discrete Approach , 2002, hep-th/0212194.

[2]  S. Albeverio,et al.  The Wightman Axioms and the Mass Gap for Strong Interactions of Exponential Type in Two-Dimensional Space-Time , 1974 .

[3]  Guillaume Chapuy,et al.  Asymptotic Enumeration of Constellations and Related Families of Maps on Orientable Surfaces , 2008, Combinatorics, Probability and Computing.

[4]  Shiing-Shen Chern,et al.  An elementary proof of the existence of isothermal parameters on a surface , 1955 .

[5]  G. Parisi Brownian motion , 2005, Nature.

[6]  A proposal for strings at D > 62; 1 , 1992, hep-th/9208026.

[7]  Gilles Schaeffer,et al.  The degree distribution in bipartite planar maps: applications to the Ising model , 2002 .

[8]  T. Jónsson,et al.  a Solvable 2d Gravity Model with γ>0 , 1994, hep-th/9401137.

[9]  The Ising Model on a Quenched Ensemble of c=−5 Gravity Graphs , 1999, cond-mat/9804137.

[10]  Simplicial Quantum Gravity and Random Lattices , 1993, hep-th/9303127.

[11]  F. David CONFORMAL FIELD THEORIES COUPLED TO 2-D GRAVITY IN THE CONFORMAL GAUGE , 1988 .

[12]  P. Di Francesco,et al.  2D gravity and random matrices , 1993 .

[13]  B. M. Fulk MATH , 1992 .

[14]  Guillaume Chapuy,et al.  The structure of unicellular maps, and a connection between maps of positive genus and planar labelled trees , 2008, 0804.0546.

[15]  F. David Random Matrices and Two-Dimensional Gravity , 1994 .

[16]  F. David Randomly triangulated surfaces in - 2 dimensions , 1985 .

[17]  B. Duplantier RANDOM WALKS AND QUANTUM GRAVITY IN TWO DIMENSIONS , 1998 .

[18]  P. Hacking,et al.  Riemann Surfaces , 2007 .

[19]  Harmonic Measure Exponents for Two-Dimensional Percolation , 1999, cond-mat/9901008.

[20]  B. Eynard Large N expansion of convergent matrix integrals, holomorphic anomalies, and background independence , 2008, 0802.1788.

[21]  F. David,et al.  Another derivation of the geometrical KPZ relations , 2008, 0810.2858.

[22]  Olivier Bernardi On Triangulations with High Vertex Degree , 2006 .

[23]  Scaling in quantum gravity , 1995, hep-th/9501049.

[24]  Philippe Flajolet,et al.  Airy Phenomena and Analytic Combinatorics of Connected Graphs , 2004, Electron. J. Comb..

[25]  Duplantier Conformally invariant fractals and potential theory , 2000, Physical review letters.

[26]  Path Crossing Exponents and the External Perimeter in 2D Percolation , 1999, cond-mat/9901018.

[27]  The O(n) model on a random surface: critical points and large-order behaviour , 1992, hep-th/9204082.

[28]  J. Bouttier,et al.  Statistics of geodesics in large quadrangulations , 2007, 0712.2160.

[29]  Vladimir Kazakov,et al.  Critical properties of randomly triangulated planar random surfaces , 1985 .

[30]  Gilles Schaeffer Conjugaison d'arbres et cartes combinatoires aléatoires , 1998 .

[31]  B. Duplantier Course 3 - Conformal Random Geometry , 2006 .

[32]  M. Stephanov,et al.  Random Matrices , 2005, hep-ph/0509286.

[33]  J. Teschner,et al.  Boundary Liouville field theory: boundary three-point function , 2002 .

[34]  Amir Dembo,et al.  Large Deviations Techniques and Applications , 1998 .

[35]  I. Benjamini,et al.  KPZ in One Dimensional Random Geometry of Multiplicative Cascades , 2008, 0806.1347.

[36]  B. Durhuus Multi-spin systems on a randomly triangulated surface , 1994, hep-th/9402052.

[37]  Scott Sheffield,et al.  Duality and the Knizhnik-Polyakov-Zamolodchikov relation in Liouville quantum gravity. , 2009, Physical review letters.

[38]  D. Iwanenko,et al.  Quantum Geometry , 1929, Nature.

[39]  G. Miermont,et al.  On the sphericity of scaling limits of random planar quadrangulations , 2007, 0712.3687.

[40]  H. Dorn,et al.  Two and three point functions in Liouville theory , 1994, hep-th/9403141.

[41]  Saleur,et al.  Exact determination of the percolation hull exponent in two dimensions. , 1987, Physical review letters.

[42]  Jean-Marc DAUL Q-states Potts model on a random planar lattice , 1995 .

[43]  Exact solution of the O(n) model on a random lattice , 1995, hep-th/9506193.

[44]  N. Seiberg Notes on quantum Liouville theory and quantum gravity , 2013 .

[45]  On the fractal structure of two-dimensional quantum gravity , 1995, hep-lat/9507014.

[46]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[47]  P. Francesco,et al.  Census of planar maps: From the one-matrix model solution to a combinatorial proof , 2002, cond-mat/0207682.

[48]  B. Eynard,et al.  Invariants of algebraic curves and topological expansion , 2007, math-ph/0702045.

[49]  Bertrand Duplantier Conformal Fractal Geometry and Boundary Quantum Gravity , 2003 .

[50]  Harmonic measure and winding of conformally invariant curves. , 2002, Physical review letters.

[51]  Wendelin Werner,et al.  Values of Brownian intersection exponents III: Two-sided exponents , 2002 .

[52]  Liouville theory revisited , 2001, hep-th/0104158.

[53]  G. Korchemsky Loops in the curvature matrix model , 1992 .

[54]  P. Francesco,et al.  Geometrically constrained statistical systems on regular and random lattices: From folding to meanders , 2005, cond-mat/0505293.

[55]  Shing-Tung Yau,et al.  Computing Conformal Structure of Surfaces , 2002, Commun. Inf. Syst..

[56]  Olivier Bernardi Tutte Polynomial, Subgraphs, Orientations and Sandpile Model: New Connections via Embeddings , 2008, Electron. J. Comb..

[57]  Vladimir Kazakov,et al.  Ising model on a dynamical planar random lattice: Exact solution , 1986 .

[58]  G. Parisi,et al.  Planar diagrams , 1978 .

[59]  Y. Peres,et al.  Thick points of the Gaussian free field. , 2009, 0902.3842.

[60]  B. Eynard,et al.  Topological expansion and boundary conditions , 2007, 0710.0223.

[61]  A. Zamolodchikov Higher equations of motion in Liouville field theory , 2003 .

[62]  Higher Conformal Multifractality , 2002, cond-mat/0207743.

[63]  Gilles Schaeffer,et al.  A Bijection for Rooted Maps on Orientable Surfaces , 2007, SIAM J. Discret. Math..

[64]  P. Zinn-Justin,et al.  Two-matrix model with ABAB interaction , 1999 .

[65]  Alexander M. Polyakov,et al.  Fractal Structure of 2D Quantum Gravity , 1988 .

[66]  Olivier Bernardi,et al.  Parenthesis , 2020, X—The Problem of the Negro as a Problem for Thought.

[67]  P. Francesco,et al.  Geodesic distance in planar graphs , 2003, cond-mat/0303272.

[68]  Arnold Perlmutter,et al.  International Journal of Modern Physics A: Preface , 2005 .

[69]  I. Kostov,et al.  Boundary Liouville theory and 2D quantum gravity , 2003, hep-th/0307189.

[70]  Omer Angel,et al.  Uniform Infinite Planar Triangulations , 2002 .

[71]  Conformal Random Geometry , 2006, math-ph/0608053.

[72]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[73]  G. Bonnet,et al.  The Potts-q random matrix model: loop equations, critical exponents, and rational case , 1999 .

[74]  LIOUVILLE THEORY: QUANTUM GEOMETRY OF RIEMANN SURFACES , 1993, hep-th/9308125.

[75]  J. Bouttier,et al.  The three-point function of planar quadrangulations , 2008, 0805.2355.

[76]  V. Kazakov,et al.  Loop gas model for open strings , 1992, hep-th/9205059.

[77]  Quantum Geometry of Fermionic Strings , 1981 .

[78]  J. Distler,et al.  Conformal Field Theory and 2D Quantum Gravity , 1989 .

[79]  Radius and profile of random planar maps with faces of arbitrary degrees , 2007, 0706.3334.

[80]  Xia Hua Thick Points of the Gaussian Free Field , 2009 .

[81]  J. Bouttier,et al.  Confluence of geodesic paths and separating loops in large planar quadrangulations , 2008, 0811.0509.

[82]  Wendelin Werner,et al.  Values of Brownian intersection exponents, II: Plane exponents , 2000, math/0003156.

[83]  A. Zamolodchikov,et al.  Conformal bootstrap in Liouville field theory , 1995 .

[84]  I. Kostov O($n$) Vector Model on a Planar Random Lattice: Spectrum of Anomalous Dimensions , 1989 .

[85]  J. I. Brauman Polymers , 1991, Science.

[86]  S. Sheffield Conformal weldings of random surfaces: SLE and the quantum gravity zipper , 2010, 1012.4797.

[87]  Jean-Franccois Marckert,et al.  Invariance principles for random bipartite planar maps , 2005, math/0504110.

[88]  A. Polyakov From Quarks to Strings , 2008, 0812.0183.

[89]  A. Migdal,et al.  Possible types of critical behaviour and the mean size of dynamically triangulated random surfaces , 1986 .

[90]  O. Schramm,et al.  Conformal restriction: The chordal case , 2002, math/0209343.

[91]  Liouville Field Theory — A decade after the revolution , 2004, hep-th/0402009.

[92]  M. Ziegler Volume 152 of Graduate Texts in Mathematics , 1995 .

[93]  Wendelin Werner,et al.  CRITICAL EXPONENTS FOR TWO-DIMENSIONAL PERCOLATION , 2001 .

[94]  Shing-Tung Yau,et al.  Geometric Compression Using Riemann Surface Structure , 2003, Commun. Inf. Syst..

[95]  Gr'egory Miermont,et al.  Tessellations of random maps of arbitrary genus , 2007, 0712.3688.

[96]  I. Kostov THE ADE FACE MODELS ON A FLUCTUATING PLANAR LATTICE , 1989 .

[97]  Olivier Bernardi A Characterization of the Tutte Polynomial via Combinatorial Embeddings , 2006 .

[98]  Meanders: exact asymptotics , 1999, cond-mat/9910453.

[99]  Jürg Fröhlich,et al.  Diseases of triangulated random surface models, and possible cures , 1985 .

[100]  Shing-Tung Yau,et al.  Optimal Global Conformal Surface Parameterization for Visualization , 2004, Commun. Inf. Syst..

[101]  Barry Simon,et al.  The P(φ)[2] Euclidean (quantum) field theory , 1974 .

[102]  Duplantier,et al.  Conformal spectra of polymers on a random surface. , 1988, Physical review letters.

[103]  J. L. Gall,et al.  The topological structure of scaling limits of large planar maps , 2006, math/0607567.

[104]  Anirvan M. Sengupta,et al.  NEW CRITICAL BEHAVIOR IN d = 0 LARGE-N MATRIX MODELS , 1990 .

[105]  A. Polyakov Quantum Gravity in Two Dimensions , 1987 .

[106]  Bergfinnur Durhuus,et al.  Quantum Geometry: A Statistical Field Theory Approach , 1997 .

[107]  A. Polyakov Quantum Geometry of Bosonic Strings , 1981 .

[108]  Lectures on 2D gravity and 2D string theory (TASI 1992) , 1992, hep-th/9304011.

[109]  Conformal invariance and intersections of random walks. , 1988, Physical review letters.

[110]  I. Klebanov,et al.  Wormholes, matrix models, and Liouville gravity , 1996 .

[111]  Boundary loop models and 2D quantum gravity , 2007, hep-th/0703221.

[112]  Some results for the exponential interaction in two or more dimensions , 1979 .

[113]  G. Thorleifsson,et al.  Geometrical interpretation of the Knizhnik-Polyakov-Zamolodchikov exponents , 1996 .

[114]  S. Mathur,et al.  World-sheet geometry and baby universes in 2D quantum gravity , 1992, hep-th/9204017.

[115]  A. Migdal,et al.  Analytical and numerical study of a model of dynamically triangulated random surfaces , 1986 .

[116]  B. Duplantier,et al.  Geometrical critical phenomena on a random surface of arbitrary genus , 1990 .

[117]  S. Sheffield,et al.  Duality and KPZ in Liouville Quantum Gravity , 2009, 0901.0277.

[118]  M. Goulian,et al.  Correlation functions in Liouville theory. , 1991, Physical review letters.

[119]  Non-perturbative solution of matrix models modified by trace-squared terms , 1994, hep-th/9409064.

[120]  G. Korchemsky MATRIX MODEL PERTURBED BY HIGHER ORDER CURVATURE TERMS , 1992 .

[121]  Shing-Tung Yau,et al.  Geometric Accuracy Analysis for Discrete Surface Approximation , 2006, GMP.

[122]  Ivan Kostov Exact solution of the six-vertex model on a random lattice , 2000 .

[123]  V. Vargas,et al.  KPZ formula for log-infinitely divisible multifractal random measures , 2008, 0807.1036.

[124]  Alexander M. Polyakov,et al.  Gauge Fields And Strings , 1987 .

[125]  Ioannis Karatzas,et al.  Brownian Motion and Stochastic Calculus , 1987 .

[126]  M. Gaudin,et al.  O(n) model on a fluctuating planar lattice. Some exact results , 1989 .

[127]  G. Lawler,et al.  Intersection Exponents for Planar Brownian Motion , 1999 .

[128]  S. Sheffield Gaussian free fields for mathematicians , 2003, math/0312099.

[129]  P. Francesco,et al.  Combinatorics of hard particles on planar graphs , 2002, cond-mat/0211168.

[130]  TWO-DIMENSIONAL COPOLYMERS AND EXACT CONFORMAL MULTIFRACTALITY , 1998, cond-mat/9812439.

[131]  Yalin Wang,et al.  Surface Segmentation Using Global Conformal Structure , 2004, Commun. Inf. Syst..

[132]  Wendelin Werner,et al.  Values of Brownian intersection exponents, I: Half-plane exponents , 1999 .

[133]  L. Takhtajan,et al.  Quantum Liouville Theory in the Background Field Formalism I. Compact Riemann Surfaces , 2006 .

[134]  S. Albeverio,et al.  A global and stochastic analysis approach to bosonic strings and associated quantum fields , 1992 .

[135]  Exploration trees and conformal loop ensembles , 2006, math/0609167.

[136]  R. Høegh-Krohn,et al.  A general class of quantum fields without cut-offs in two space-time dimensions , 1971 .

[137]  Philippe Flajolet,et al.  Random maps, coalescing saddles, singularity analysis, and Airy phenomena , 2001, Random Struct. Algorithms.

[138]  J. L. Gall,et al.  Geodesics in large planar maps and in the Brownian map , 2008, 0804.3012.

[139]  J. Bouttier,et al.  Blocked edges on Eulerian maps and mobiles: application to spanning trees, hard particles and the Ising model , 2007, math/0702097.

[140]  B. Duplantier Random walks, polymers, percolation, and quantum gravity in two dimensions , 1999 .

[141]  G. Moore,et al.  From loops to states in two-dimensional quantum gravity , 1991 .