Liouville quantum gravity and KPZ
暂无分享,去创建一个
[1] Boundary Correlators in 2D Quantum Gravity: Liouville versus Discrete Approach , 2002, hep-th/0212194.
[2] S. Albeverio,et al. The Wightman Axioms and the Mass Gap for Strong Interactions of Exponential Type in Two-Dimensional Space-Time , 1974 .
[3] Guillaume Chapuy,et al. Asymptotic Enumeration of Constellations and Related Families of Maps on Orientable Surfaces , 2008, Combinatorics, Probability and Computing.
[4] Shiing-Shen Chern,et al. An elementary proof of the existence of isothermal parameters on a surface , 1955 .
[5] G. Parisi. Brownian motion , 2005, Nature.
[6] A proposal for strings at D > 62; 1 , 1992, hep-th/9208026.
[7] Gilles Schaeffer,et al. The degree distribution in bipartite planar maps: applications to the Ising model , 2002 .
[8] T. Jónsson,et al. a Solvable 2d Gravity Model with γ>0 , 1994, hep-th/9401137.
[9] The Ising Model on a Quenched Ensemble of c=−5 Gravity Graphs , 1999, cond-mat/9804137.
[10] Simplicial Quantum Gravity and Random Lattices , 1993, hep-th/9303127.
[11] F. David. CONFORMAL FIELD THEORIES COUPLED TO 2-D GRAVITY IN THE CONFORMAL GAUGE , 1988 .
[12] P. Di Francesco,et al. 2D gravity and random matrices , 1993 .
[13] B. M. Fulk. MATH , 1992 .
[14] Guillaume Chapuy,et al. The structure of unicellular maps, and a connection between maps of positive genus and planar labelled trees , 2008, 0804.0546.
[15] F. David. Random Matrices and Two-Dimensional Gravity , 1994 .
[16] F. David. Randomly triangulated surfaces in - 2 dimensions , 1985 .
[17] B. Duplantier. RANDOM WALKS AND QUANTUM GRAVITY IN TWO DIMENSIONS , 1998 .
[18] P. Hacking,et al. Riemann Surfaces , 2007 .
[19] Harmonic Measure Exponents for Two-Dimensional Percolation , 1999, cond-mat/9901008.
[20] B. Eynard. Large N expansion of convergent matrix integrals, holomorphic anomalies, and background independence , 2008, 0802.1788.
[21] F. David,et al. Another derivation of the geometrical KPZ relations , 2008, 0810.2858.
[22] Olivier Bernardi. On Triangulations with High Vertex Degree , 2006 .
[23] Scaling in quantum gravity , 1995, hep-th/9501049.
[24] Philippe Flajolet,et al. Airy Phenomena and Analytic Combinatorics of Connected Graphs , 2004, Electron. J. Comb..
[25] Duplantier. Conformally invariant fractals and potential theory , 2000, Physical review letters.
[26] Path Crossing Exponents and the External Perimeter in 2D Percolation , 1999, cond-mat/9901018.
[27] The O(n) model on a random surface: critical points and large-order behaviour , 1992, hep-th/9204082.
[28] J. Bouttier,et al. Statistics of geodesics in large quadrangulations , 2007, 0712.2160.
[29] Vladimir Kazakov,et al. Critical properties of randomly triangulated planar random surfaces , 1985 .
[30] Gilles Schaeffer. Conjugaison d'arbres et cartes combinatoires aléatoires , 1998 .
[31] B. Duplantier. Course 3 - Conformal Random Geometry , 2006 .
[32] M. Stephanov,et al. Random Matrices , 2005, hep-ph/0509286.
[33] J. Teschner,et al. Boundary Liouville field theory: boundary three-point function , 2002 .
[34] Amir Dembo,et al. Large Deviations Techniques and Applications , 1998 .
[35] I. Benjamini,et al. KPZ in One Dimensional Random Geometry of Multiplicative Cascades , 2008, 0806.1347.
[36] B. Durhuus. Multi-spin systems on a randomly triangulated surface , 1994, hep-th/9402052.
[37] Scott Sheffield,et al. Duality and the Knizhnik-Polyakov-Zamolodchikov relation in Liouville quantum gravity. , 2009, Physical review letters.
[38] D. Iwanenko,et al. Quantum Geometry , 1929, Nature.
[39] G. Miermont,et al. On the sphericity of scaling limits of random planar quadrangulations , 2007, 0712.3687.
[40] H. Dorn,et al. Two and three point functions in Liouville theory , 1994, hep-th/9403141.
[41] Saleur,et al. Exact determination of the percolation hull exponent in two dimensions. , 1987, Physical review letters.
[42] Jean-Marc DAUL. Q-states Potts model on a random planar lattice , 1995 .
[43] Exact solution of the O(n) model on a random lattice , 1995, hep-th/9506193.
[44] N. Seiberg. Notes on quantum Liouville theory and quantum gravity , 2013 .
[45] On the fractal structure of two-dimensional quantum gravity , 1995, hep-lat/9507014.
[46] Miss A.O. Penney. (b) , 1974, The New Yale Book of Quotations.
[47] P. Francesco,et al. Census of planar maps: From the one-matrix model solution to a combinatorial proof , 2002, cond-mat/0207682.
[48] B. Eynard,et al. Invariants of algebraic curves and topological expansion , 2007, math-ph/0702045.
[49] Bertrand Duplantier. Conformal Fractal Geometry and Boundary Quantum Gravity , 2003 .
[50] Harmonic measure and winding of conformally invariant curves. , 2002, Physical review letters.
[51] Wendelin Werner,et al. Values of Brownian intersection exponents III: Two-sided exponents , 2002 .
[52] Liouville theory revisited , 2001, hep-th/0104158.
[53] G. Korchemsky. Loops in the curvature matrix model , 1992 .
[54] P. Francesco,et al. Geometrically constrained statistical systems on regular and random lattices: From folding to meanders , 2005, cond-mat/0505293.
[55] Shing-Tung Yau,et al. Computing Conformal Structure of Surfaces , 2002, Commun. Inf. Syst..
[56] Olivier Bernardi. Tutte Polynomial, Subgraphs, Orientations and Sandpile Model: New Connections via Embeddings , 2008, Electron. J. Comb..
[57] Vladimir Kazakov,et al. Ising model on a dynamical planar random lattice: Exact solution , 1986 .
[58] G. Parisi,et al. Planar diagrams , 1978 .
[59] Y. Peres,et al. Thick points of the Gaussian free field. , 2009, 0902.3842.
[60] B. Eynard,et al. Topological expansion and boundary conditions , 2007, 0710.0223.
[61] A. Zamolodchikov. Higher equations of motion in Liouville field theory , 2003 .
[62] Higher Conformal Multifractality , 2002, cond-mat/0207743.
[63] Gilles Schaeffer,et al. A Bijection for Rooted Maps on Orientable Surfaces , 2007, SIAM J. Discret. Math..
[64] P. Zinn-Justin,et al. Two-matrix model with ABAB interaction , 1999 .
[65] Alexander M. Polyakov,et al. Fractal Structure of 2D Quantum Gravity , 1988 .
[66] Olivier Bernardi,et al. Parenthesis , 2020, X—The Problem of the Negro as a Problem for Thought.
[67] P. Francesco,et al. Geodesic distance in planar graphs , 2003, cond-mat/0303272.
[68] Arnold Perlmutter,et al. International Journal of Modern Physics A: Preface , 2005 .
[69] I. Kostov,et al. Boundary Liouville theory and 2D quantum gravity , 2003, hep-th/0307189.
[70] Omer Angel,et al. Uniform Infinite Planar Triangulations , 2002 .
[71] Conformal Random Geometry , 2006, math-ph/0608053.
[72] Ericka Stricklin-Parker,et al. Ann , 2005 .
[73] G. Bonnet,et al. The Potts-q random matrix model: loop equations, critical exponents, and rational case , 1999 .
[74] LIOUVILLE THEORY: QUANTUM GEOMETRY OF RIEMANN SURFACES , 1993, hep-th/9308125.
[75] J. Bouttier,et al. The three-point function of planar quadrangulations , 2008, 0805.2355.
[76] V. Kazakov,et al. Loop gas model for open strings , 1992, hep-th/9205059.
[77] Quantum Geometry of Fermionic Strings , 1981 .
[78] J. Distler,et al. Conformal Field Theory and 2D Quantum Gravity , 1989 .
[79] Radius and profile of random planar maps with faces of arbitrary degrees , 2007, 0706.3334.
[80] Xia Hua. Thick Points of the Gaussian Free Field , 2009 .
[81] J. Bouttier,et al. Confluence of geodesic paths and separating loops in large planar quadrangulations , 2008, 0811.0509.
[82] Wendelin Werner,et al. Values of Brownian intersection exponents, II: Plane exponents , 2000, math/0003156.
[83] A. Zamolodchikov,et al. Conformal bootstrap in Liouville field theory , 1995 .
[84] I. Kostov. O($n$) Vector Model on a Planar Random Lattice: Spectrum of Anomalous Dimensions , 1989 .
[85] J. I. Brauman. Polymers , 1991, Science.
[86] S. Sheffield. Conformal weldings of random surfaces: SLE and the quantum gravity zipper , 2010, 1012.4797.
[87] Jean-Franccois Marckert,et al. Invariance principles for random bipartite planar maps , 2005, math/0504110.
[88] A. Polyakov. From Quarks to Strings , 2008, 0812.0183.
[89] A. Migdal,et al. Possible types of critical behaviour and the mean size of dynamically triangulated random surfaces , 1986 .
[90] O. Schramm,et al. Conformal restriction: The chordal case , 2002, math/0209343.
[91] Liouville Field Theory — A decade after the revolution , 2004, hep-th/0402009.
[92] M. Ziegler. Volume 152 of Graduate Texts in Mathematics , 1995 .
[93] Wendelin Werner,et al. CRITICAL EXPONENTS FOR TWO-DIMENSIONAL PERCOLATION , 2001 .
[94] Shing-Tung Yau,et al. Geometric Compression Using Riemann Surface Structure , 2003, Commun. Inf. Syst..
[95] Gr'egory Miermont,et al. Tessellations of random maps of arbitrary genus , 2007, 0712.3688.
[96] I. Kostov. THE ADE FACE MODELS ON A FLUCTUATING PLANAR LATTICE , 1989 .
[97] Olivier Bernardi. A Characterization of the Tutte Polynomial via Combinatorial Embeddings , 2006 .
[98] Meanders: exact asymptotics , 1999, cond-mat/9910453.
[99] Jürg Fröhlich,et al. Diseases of triangulated random surface models, and possible cures , 1985 .
[100] Shing-Tung Yau,et al. Optimal Global Conformal Surface Parameterization for Visualization , 2004, Commun. Inf. Syst..
[101] Barry Simon,et al. The P(φ)[2] Euclidean (quantum) field theory , 1974 .
[102] Duplantier,et al. Conformal spectra of polymers on a random surface. , 1988, Physical review letters.
[103] J. L. Gall,et al. The topological structure of scaling limits of large planar maps , 2006, math/0607567.
[104] Anirvan M. Sengupta,et al. NEW CRITICAL BEHAVIOR IN d = 0 LARGE-N MATRIX MODELS , 1990 .
[105] A. Polyakov. Quantum Gravity in Two Dimensions , 1987 .
[106] Bergfinnur Durhuus,et al. Quantum Geometry: A Statistical Field Theory Approach , 1997 .
[107] A. Polyakov. Quantum Geometry of Bosonic Strings , 1981 .
[108] Lectures on 2D gravity and 2D string theory (TASI 1992) , 1992, hep-th/9304011.
[109] Conformal invariance and intersections of random walks. , 1988, Physical review letters.
[110] I. Klebanov,et al. Wormholes, matrix models, and Liouville gravity , 1996 .
[111] Boundary loop models and 2D quantum gravity , 2007, hep-th/0703221.
[112] Some results for the exponential interaction in two or more dimensions , 1979 .
[113] G. Thorleifsson,et al. Geometrical interpretation of the Knizhnik-Polyakov-Zamolodchikov exponents , 1996 .
[114] S. Mathur,et al. World-sheet geometry and baby universes in 2D quantum gravity , 1992, hep-th/9204017.
[115] A. Migdal,et al. Analytical and numerical study of a model of dynamically triangulated random surfaces , 1986 .
[116] B. Duplantier,et al. Geometrical critical phenomena on a random surface of arbitrary genus , 1990 .
[117] S. Sheffield,et al. Duality and KPZ in Liouville Quantum Gravity , 2009, 0901.0277.
[118] M. Goulian,et al. Correlation functions in Liouville theory. , 1991, Physical review letters.
[119] Non-perturbative solution of matrix models modified by trace-squared terms , 1994, hep-th/9409064.
[120] G. Korchemsky. MATRIX MODEL PERTURBED BY HIGHER ORDER CURVATURE TERMS , 1992 .
[121] Shing-Tung Yau,et al. Geometric Accuracy Analysis for Discrete Surface Approximation , 2006, GMP.
[122] Ivan Kostov. Exact solution of the six-vertex model on a random lattice , 2000 .
[123] V. Vargas,et al. KPZ formula for log-infinitely divisible multifractal random measures , 2008, 0807.1036.
[124] Alexander M. Polyakov,et al. Gauge Fields And Strings , 1987 .
[125] Ioannis Karatzas,et al. Brownian Motion and Stochastic Calculus , 1987 .
[126] M. Gaudin,et al. O(n) model on a fluctuating planar lattice. Some exact results , 1989 .
[127] G. Lawler,et al. Intersection Exponents for Planar Brownian Motion , 1999 .
[128] S. Sheffield. Gaussian free fields for mathematicians , 2003, math/0312099.
[129] P. Francesco,et al. Combinatorics of hard particles on planar graphs , 2002, cond-mat/0211168.
[130] TWO-DIMENSIONAL COPOLYMERS AND EXACT CONFORMAL MULTIFRACTALITY , 1998, cond-mat/9812439.
[131] Yalin Wang,et al. Surface Segmentation Using Global Conformal Structure , 2004, Commun. Inf. Syst..
[132] Wendelin Werner,et al. Values of Brownian intersection exponents, I: Half-plane exponents , 1999 .
[133] L. Takhtajan,et al. Quantum Liouville Theory in the Background Field Formalism I. Compact Riemann Surfaces , 2006 .
[134] S. Albeverio,et al. A global and stochastic analysis approach to bosonic strings and associated quantum fields , 1992 .
[135] Exploration trees and conformal loop ensembles , 2006, math/0609167.
[136] R. Høegh-Krohn,et al. A general class of quantum fields without cut-offs in two space-time dimensions , 1971 .
[137] Philippe Flajolet,et al. Random maps, coalescing saddles, singularity analysis, and Airy phenomena , 2001, Random Struct. Algorithms.
[138] J. L. Gall,et al. Geodesics in large planar maps and in the Brownian map , 2008, 0804.3012.
[139] J. Bouttier,et al. Blocked edges on Eulerian maps and mobiles: application to spanning trees, hard particles and the Ising model , 2007, math/0702097.
[140] B. Duplantier. Random walks, polymers, percolation, and quantum gravity in two dimensions , 1999 .
[141] G. Moore,et al. From loops to states in two-dimensional quantum gravity , 1991 .