ICESat/GLAS Canopy Height Sensitivity Inferred from Airborne Lidar

Variations in laser properties and data acquisition times introduced inconsistencies in Geoscience Laser Altimeter System (GLAS) data. The effect of data inconsistencies, on two GLAS height retrieval methods, from three study sites, are investigated and validated against airborne laser scanning (ALS) percentile heights, from three data sources: all/first return point clouds, and raster canopy height models. GLAS/ALS controls were established as a basis against which the influence of laser number, transmission energy, and seasonality were assessed through comparison statistics. The favored GLAS height method best compared with ALS 95th percentile heights from an all return point cloud. Optimal GLAS data (R2 = 0.69, RMSE = 8.10 m) were noted when GLAS acquired data during summertime from high energy, laser three transmissions. As GLAS data can be used in global biomass assessments, there is a need to understand and quantify the influence of these data inconsistencies on canopy height estimates. (Less)

[1]  Alfredo Huete,et al.  Land surface phenological response to decadal climate variability across Australia using satellite remote sensing , 2014 .

[2]  Congcong Li,et al.  Forest Canopy Height Extraction in Rugged Areas With ICESat/GLAS Data , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[3]  Peter R. J. North,et al.  Slope Estimation from ICESat/GLAS , 2014, Remote. Sens..

[4]  Natascha Kljun,et al.  Integrating terrestrial and airborne lidar to calibrate a 3D canopy model of effective leaf area index , 2013 .

[5]  Sylvie Durrieu,et al.  Stem Volume and Above-Ground Biomass Estimation of Individual Pine Trees From LiDAR Data: Contribution of Full-Waveform Signals , 2013, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[6]  Bruce K. Wylie,et al.  Towards Integration of GLAS into a National Fuel Mapping Program , 2013 .

[7]  M. Simard,et al.  Height and biomass of mangroves in Africa from ICESat/GLAS and SRTM , 2013 .

[8]  Guoqing Sun,et al.  Evaluating Prospects for Improved Forest Parameter Retrieval From Satellite LiDAR Using a Physically-Based Radiative Transfer Model , 2013, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[9]  Natascha Kljun,et al.  Vegetation height and cover fraction between 60° S and 60° N from ICESat GLAS data , 2012 .

[10]  GongPeng,et al.  Earth science applications of ICESat/GLAS , 2011 .

[11]  A. Baccini,et al.  Mapping forest canopy height globally with spaceborne lidar , 2011 .

[12]  Wenze Yang,et al.  Assessment of the impacts of surface topography, off-nadir pointing and vegetation structure on vegetation lidar waveforms using an extended geometric optical and radiative transfer model , 2011 .

[13]  D. Hanna,et al.  Principles of Lasers , 2011 .

[14]  Peter R. J. North,et al.  Forestry Applications for Satellite Lidar Remote Sensing , 2011 .

[15]  Brian Christopher Gunter,et al.  ICESat laser full waveform analysis for the classification of land cover types over the cryosphere , 2010 .

[16]  Qi Chen Retrieving vegetation height of forests and woodlands over mountainous areas in the Pacific Coast region using satellite laser altimetry , 2010 .

[17]  S. Los,et al.  Uncertainty within satellite LiDAR estimations of vegetation and topography , 2010 .

[18]  Jon P. Mills,et al.  Factors Influencing Pulse Width of Small Footprint, Full Waveform Airborne Laser Scanning Data , 2010 .

[19]  Qi Chen Assessment of terrain elevation derived from satellite laser altimetry over mountainous forest areas using airborne lidar data , 2010 .

[20]  Alan H. Strahler,et al.  Assessing general relationships between aboveground biomass and vegetation structure parameters for improved carbon estimate from lidar remote sensing , 2009 .

[21]  I. Mammarella,et al.  Estimating nocturnal ecosystem respiration from the vertical turbulent flux and change in storage of CO2 , 2009 .

[22]  C. Hopkinson,et al.  Testing LiDAR models of fractional cover across multiple forest ecozones , 2009 .

[23]  Frédéric Bretar,et al.  Full-waveform topographic lidar : State-of-the-art , 2009 .

[24]  Peter R. J. North,et al.  A Monte Carlo radiative transfer model of satellite waveform LiDAR , 2010 .

[25]  Ross Nelson,et al.  Model effects on GLAS-based regional estimates of forest biomass and carbon , 2010 .

[26]  A. Neuenschwander,et al.  Characterization of ICESat/GLAS waveforms over terrestrial ecosystems: Implications for vegetation mapping , 2008 .

[27]  Bob E. Schutz,et al.  A Survey of ICESat Coastal Altimetry Applications: Continental Coast, Open Ocean Island, and Inland River , 2008 .

[28]  Peter R. J. North,et al.  Vegetation height estimates for a mixed temperate forest using satellite laser altimetry , 2008 .

[29]  G. Vosselman,et al.  Single and two epoch analysis of ICESat full waveform data over forested areas , 2008 .

[30]  K. Ranson,et al.  Forest vertical structure from GLAS : An evaluation using LVIS and SRTM data , 2008 .

[31]  C. Hopkinson The influence of flying altitude, beam divergence, and pulse repetition frequency on laser pulse return intensity and canopy frequency distribution , 2007 .

[32]  Michael A. Lefsky,et al.  Revised method for forest canopy height estimation from Geoscience Laser Altimeter System waveforms , 2007 .

[33]  J. Spinhirne,et al.  Tropical cloud‐top height distributions revealed by the Ice, Cloud, and Land Elevation Satellite (ICESat)/Geoscience Laser Altimeter System (GLAS) , 2006 .

[34]  W. Cohen,et al.  Estimates of forest canopy height and aboveground biomass using ICESat , 2005 .

[35]  Bob E Schutz,et al.  The transmitter pointing determination in the Geoscience Laser Altimeter System , 2005 .

[36]  J. Spinhirne,et al.  Cloud and aerosol measurements from GLAS: Overview and initial results , 2005 .

[37]  J. Abshire,et al.  Geoscience Laser Altimeter System (GLAS) on the ICESat Mission: On‐orbit measurement performance , 2005 .

[38]  R. Leuning,et al.  Carbon and water fluxes over a temperate Eucalyptus forest and a tropical wet/dry savanna in Australia: measurements and comparison with MODIS remote sensing estimates , 2005 .

[39]  T. Dawson,et al.  Quantifying forest above ground carbon content using LiDAR remote sensing , 2004 .

[40]  D. Roberts,et al.  Small-footprint lidar estimation of sub-canopy elevation and tree height in a tropical rain forest landscape , 2004 .

[41]  K. Kraus,et al.  FROM SINGLE-PULSE TO FULL-WAVEFORM AIRBORNE LASER SCANNERS: POTENTIAL AND PRACTICAL CHALLENGES , 2004 .

[42]  Joseph G. Eisenhauer Regression through the Origin , 2003 .

[43]  H. Zwally,et al.  Overview of ICESat's Laser Measurements of Polar Ice, Atmosphere, Ocean, and Land , 2002 .

[44]  E. Næsset Predicting forest stand characteristics with airborne scanning laser using a practical two-stage procedure and field data , 2002 .

[45]  W. Cohen,et al.  Lidar Remote Sensing for Ecosystem Studies , 2002 .

[46]  R. Dubayah,et al.  Lidar Remote Sensing for Forestry , 2000, Journal of Forestry.

[47]  J. Means,et al.  Predicting forest stand characteristics with airborne scanning lidar , 2000 .

[48]  W. Cohen,et al.  Lidar Remote Sensing of the Canopy Structure and Biophysical Properties of Douglas-Fir Western Hemlock Forests , 1999 .

[49]  Emmanuel P. Baltsavias,et al.  Airborne laser scanning: basic relations and formulas , 1999 .

[50]  J. Means Use of Large-Footprint Scanning Airborne Lidar To Estimate Forest Stand Characteristics in the Western Cascades of Oregon , 1999 .

[51]  W. Cohen,et al.  Surface lidar remote sensing of basal area and biomass in deciduous forests of eastern Maryland, USA , 1999 .