Diffusion NMR Spectroscopy: Folding and Aggregation of Domains in p53

Protein interactions and aggregation phenomena are probably amongst the most ubiquitous types of interactions in biological systems; they play a key role in many cellular processes. The ability to identify weak intermolecular interactions is a unique feature of NMR spectroscopy. In recent years, pulsed‐field gradient NMR spectroscopy has become a convenient method to study molecular diffusion in solution. Since the diffusion coefficient of a certain molecule under given conditions correlates with its effective molecular weight, size, and shape, it is evident that diffusion can be used to map intermolecular interactions or aggregation events. Complex models can be derived from comparison of experimental diffusion data with those predicted by hydrodynamic simulations. In this review, we will give an introduction to pulsed‐field gradient NMR spectroscopy and the hydrodynamic properties of proteins and peptides. Furthermore, we show examples for applying these techniques to a helical peptide and its hydrophobic oligomerization, as well as to the dimerization behavior and folding of p53.

[1]  D. Woessner Effects of Diffusion in Nuclear Magnetic Resonance Spin-Echo Experiments , 1961 .

[2]  J. García de la Torre,et al.  Calculation of hydrodynamic properties of globular proteins from their atomic-level structure. , 2000, Biophysical journal.

[3]  Charles S. Johnson Effects of Chemical Exchange in Diffusion-Ordered 2D NMR Spectra , 1993 .

[4]  D. Engelman,et al.  Structure-based prediction of the stability of transmembrane helix-helix interactions: the sequence dependence of glycophorin A dimerization. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[5]  Charles S. Johnson,et al.  Three-Dimensional Diffusion-Ordered NMR Spectroscopy: The Homonuclear COSY–DOSY Experiment , 1996 .

[6]  D. Canet Radiofrequency field gradient experiments , 1997 .

[7]  C. Toniolo,et al.  Solution Structure, Dimerization, and Dynamics of a Lipophilic α/310-Helical, Cα-Methylated Peptide. Implications for Folding of Membrane Proteins , 2001 .

[8]  P. Kuchel,et al.  NMR diffusion measurements to characterise membrane transport and solute binding , 1997 .

[9]  C. Arrowsmith,et al.  New insights into p53 function from structural studies. , 1996, Oncogene.

[10]  C. Cantor,et al.  Biophysical Chemistry: Part II: Techniques for the Study of Biological Structure and Function , 1980 .

[11]  K. Bleicher,et al.  Diffusion Edited NMR: Screening Compound Mixtures by Affinity NMR to Detect Binding Ligands to Vancomycin , 1998 .

[12]  V. Orekhov,et al.  Sampling of protein dynamics in nanosecond time scale by 15N NMR relaxation and self-diffusion measurements. , 1999, Journal of biomolecular structure & dynamics.

[13]  V. Bloomfield,et al.  Hydrodynamic properties of macromolecular complexes. I. Translation , 1977 .

[14]  H. Carr,et al.  The Principles of Nuclear Magnetism , 1961 .

[15]  C. Klein,et al.  NMR Spectroscopy Reveals the Solution Dimerization Interface of p53 Core Domains Bound to Their Consensus DNA* , 2001, The Journal of Biological Chemistry.

[16]  G. Bodenhausen,et al.  Natural abundance nitrogen-15 NMR by enhanced heteronuclear spectroscopy , 1980 .

[17]  G. Bodenhausen,et al.  Slow diffusion of macromolecular assemblies by a new pulsed field gradient NMR method. , 2003, Journal of the American Chemical Society.

[18]  K. Vousden,et al.  Minireviewp 53 : Death Star able to induce the defensive p 53 response to oncogene , 2000 .

[19]  R. Huber,et al.  High Thermostability and Lack of Cooperative DNA Binding Distinguish the p63 Core Domain from the Homologous Tumor Suppressor p53* , 2001, The Journal of Biological Chemistry.

[20]  Detection of protein–ligand NOEs with small, weakly binding ligands by combined relaxation and diffusion filtering , 1997 .

[21]  P. Jeffrey,et al.  Crystal structure of a p53 tumor suppressor-DNA complex: understanding tumorigenic mutations. , 1994, Science.

[22]  R. Griffey,et al.  Correlation of proton and nitrogen-15 chemical shifts by multiple quantum NMR☆ , 1983 .

[23]  P. Basser Inferring microstructural features and the physiological state of tissues from diffusion‐weighted images , 1995, NMR in biomedicine.

[24]  Charles S. Johnson,et al.  Heteronuclear-Detected Diffusion-Ordered NMR Spectroscopy through Coherence Transfer , 1996 .

[25]  B. Snel,et al.  Function prediction and protein networks. , 2003, Current opinion in cell biology.

[26]  P. Bork,et al.  Structure-Based Assembly of Protein Complexes in Yeast , 2004, Science.

[27]  Claudio Toniolo,et al.  Structures of peptides from α‐amino acids methylated at the α‐carbon , , 1993 .

[28]  J. E. Tanner,et al.  Restricted Self‐Diffusion of Protons in Colloidal Systems by the Pulsed‐Gradient, Spin‐Echo Method , 1968 .

[29]  J. E. Tanner,et al.  Spin diffusion measurements : spin echoes in the presence of a time-dependent field gradient , 1965 .

[30]  L. Kay,et al.  An application of pulse-gradient double-quantum spin echoes to diffusion measurements on molecules with scalar-coupled spins , 1986 .

[31]  N. Pavletich,et al.  Crystal structure of the tetramerization domain of the p53 tumor suppressor at 1.7 angstroms , 1995, Science.

[32]  J. E. Tanner Use of the Stimulated Echo in NMR Diffusion Studies , 1970 .

[33]  E. Stejskal Use of Spin Echoes in a Pulsed Magnetic‐Field Gradient to Study Anisotropic, Restricted Diffusion and Flow , 1965 .

[34]  Peter Deuflhard,et al.  Numerical Treatment of Inverse Problems in Differential and Integral Equations: Proceedings of an International Workshop, Heidelberg, Fed. Rep. of Germany, August 30 - September 3, 1982 , 2012 .

[35]  P. Mansfield,et al.  Active magnetic screening of gradient coils in NMR imaging , 1986 .

[36]  D. Burstein Stimulated echoes: Description, applications, practical hints , 1996 .

[37]  G. Wider,et al.  Self-compensating pulsed magnetic-field gradients for short recovery times , 1994 .

[38]  S. Provencher,et al.  An eigenfunction expansion method for the analysis of exponential decay curves , 1976 .

[39]  Johannes Buchner,et al.  The N-terminal domain of p53 is natively unfolded. , 2003, Journal of molecular biology.

[40]  M. Schwaiger,et al.  Kooperative Bindung von p53 an DNA: Regulation durch Protein‐Protein‐Wechselwirkung unter Bildung einer doppelten Salzbrücke , 2005 .

[41]  Yang Xia Contrast in NMR imaging and microscopy , 1996 .

[42]  G. Marius Clore,et al.  Refined solution structure of the oligomerization domain of the tumour suppressor p53 , 1995, Nature Structural Biology.

[43]  A. Levine,et al.  Surfing the p53 network , 2000, Nature.

[44]  I. Karle,et al.  Folding, aggregation and molecular recognition in peptides. , 1992, Acta crystallographica. Section B, Structural science.

[45]  I. Karle,et al.  Structural characteristics of alpha-helical peptide molecules containing Aib residues. , 1990, Biochemistry.

[46]  M. Shapiro,et al.  Screening Mixtures by Affinity NMR , 1997 .

[47]  H. Pfeifer Principles of Nuclear Magnetic Resonance Microscopy , 1992 .

[48]  K. McLure,et al.  p53 DNA binding can be modulated by factors that alter the conformational equilibrium , 1999, The EMBO journal.

[49]  A. Palmer,et al.  Probing molecular motion by NMR. , 1997, Current opinion in structural biology.

[50]  E. Purcell,et al.  Effects of Diffusion on Free Precession in Nuclear Magnetic Resonance Experiments , 1954 .

[51]  Gary D Bader,et al.  Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry , 2002, Nature.

[52]  G. Otting,et al.  Dynamics of protein and peptide hydration. , 2004, Journal of the American Chemical Society.

[53]  A. Fersht,et al.  Recognition of DNA by p53 core domain and location of intermolecular contacts of cooperative binding. , 2002, Journal of molecular biology.

[54]  K. McLure,et al.  How p53 binds DNA as a tetramer , 1998, The EMBO journal.

[55]  William S. Price,et al.  Pulsed-field gradient nuclear magnetic resonance as a tool for studying translational diffusion: part II. Experimental aspects , 1998 .

[56]  M. Karplus,et al.  Protein-folding dynamics , 1976, Nature.

[57]  P. Mansfield,et al.  Active magnetic screening of coils for static and time-dependent magnetic field generation in NMR imaging , 1986 .

[58]  E. V. Meerwall,et al.  Effect of residual field gradients on pulsed-gradient NMR diffusion measurements☆ , 1989 .

[59]  S. Berger,et al.  Solvation phenomena of a tetrapeptide in water/trifluoroethanol and water/ethanol mixtures: a diffusion NMR, intermolecular NOE, and molecular dynamics study. , 2002, Journal of the American Chemical Society.

[60]  C. Larive,et al.  19F diffusion NMR analysis of enzyme–inhibitor binding , 2002 .

[61]  Volker Dötsch,et al.  Nuclear magnetic resonance of biological macromolecules , 2001 .

[62]  C. Arrowsmith,et al.  Solution structure of the tetrameric minimum transforming domain of p53 , 1995, Nature Structural Biology.

[63]  R. Marmorstein,et al.  Crystal Structure of the Mouse p53 Core DNA-binding Domain at 2.7 Å Resolution* , 2001, The Journal of Biological Chemistry.

[64]  M. Hrovat,et al.  NMR pulsed-gradient diffusion measurements. I. Spin-echo stability and gradient calibration , 1981 .

[65]  Y. Cohen,et al.  Diffusion coefficients of macrocyclic complexes using the PGSE NMR technique: determination of association constants , 1994 .

[66]  D. Gorenstein,et al.  DOSY-NOESY: diffusion-ordered NOESY. , 1996, Journal of magnetic resonance. Series B.

[67]  James R. Knight,et al.  A Protein Interaction Map of Drosophila melanogaster , 2003, Science.

[68]  Jonathan A. Jones,et al.  Characterisation of protein unfolding by NMR diffusion measurements , 1997 .

[69]  Charles S. Johnson Diffusion Ordered Nuclear Magnetic Resonance Spectroscopy: Principles and Applications , 1999 .

[70]  M. Hrovat,et al.  NMR pulsed gradient diffusion measurements. II. Residual gradients and lineshape distortions , 1981 .

[71]  V. Runge Advances in magnetic resonance. , 2004, Investigative radiology.

[72]  Kurt Wüthrich,et al.  NMR studies of the hydration of biological macromolecules , 1996 .

[73]  C. Larive,et al.  Analysis of protein/ligand interactions with NMR diffusion measurements: the importance of eliminating the protein background. , 2002, Journal of magnetic resonance.

[74]  J. Milner,et al.  Disruption of the nucleolus mediates stabilization of p53 in response to DNA damage and other stresses , 2003, The EMBO journal.

[75]  J. Kirkwood,et al.  The Intrinsic Viscosity, Translational and Rotatory Diffusion Constants of Rod‐Like Macromolecules in Solution , 1950 .

[76]  K. V. van Holde,et al.  Frictional coefficients of multisubunit structures. II. Application to proteins and viruses , 1967, Biopolymers.

[77]  Determination of the relative NH proton lifetimes of the peptide analogue viomycin in aqueous solution by NMR-based diffusion measurement , 1999, Journal of biomolecular NMR.

[78]  Giulio Superti-Furga,et al.  Protein complexes and proteome organization from yeast to man. , 2003, Current opinion in chemical biology.

[79]  D. Engelman,et al.  Membrane protein folding and oligomerization: the two-stage model. , 1990, Biochemistry.

[80]  Charles S. Johnson,et al.  A PFG NMR experiment for accurate diffusion and flow studies in the presence of eddy currents , 1991 .

[81]  Paul Mansfield,et al.  LETTER TO THE EDITOR: Double active magnetic screening of coils in NMR , 1986 .

[82]  A. Jerschow,et al.  3D Diffusion-Ordered TOCSY for Slowly Diffusing Molecules , 1996 .

[83]  C. Prives How loops, β sheets, and α helices help us to understand p53 , 1994, Cell.

[84]  Gottfried Otting,et al.  NMR studies of water bound to biological molecules , 1997 .

[85]  T. Malliavin,et al.  Maximum Entropy Processing of DOSY NMR Spectra , 1998 .

[86]  Eiichi Fukushima,et al.  Eddy current compensation by direct field detection and digital gradient modification , 1990 .

[87]  Anthonie Hendrik Bergman,et al.  Optimization of eddy-current compensation☆ , 1990 .

[88]  William S. Price,et al.  Pulsed-field gradient nuclear magnetic resonance as a tool for studying translational diffusion, part 1: basic theory , 1997 .

[89]  J. García de la Torre,et al.  HYDRONMR: prediction of NMR relaxation of globular proteins from atomic-level structures and hydrodynamic calculations. , 2000, Journal of magnetic resonance.

[90]  P. May,et al.  Twenty years of p53 research: structural and functional aspects of the p53 protein , 1999, Oncogene.

[91]  James R. Knight,et al.  A comprehensive analysis of protein–protein interactions in Saccharomyces cerevisiae , 2000, Nature.

[92]  P. Jehenson,et al.  Analytical method for the compensation of eddy-current effects induced by pulsed magnetic field gradients in NMR systems , 1990 .

[93]  P. Ingman,et al.  Effects of Thermal Convection on NMR and Their Elimination by Sample Rotation , 1996 .

[94]  K. V. van Holde,et al.  Frictional coefficients of multisubunit structures. I. Theory , 1967, Biopolymers.

[95]  S. Provencher A Fourier method for the analysis of exponential decay curves. , 1976, Biophysical journal.

[96]  C. Toniolo,et al.  The first water-soluble 3(10)-helical peptides. , 2000, Chemistry.

[97]  Michael J. Shapiro,et al.  Chemical Exchange in Diffusion NMR Experiments , 1998 .

[98]  H. C. Torrey Bloch Equations with Diffusion Terms , 1956 .

[99]  H Weinstein,et al.  Modeling multi-component protein-DNA complexes: the role of bending and dimerization in the complex of p53 dimers with DNA. , 2001, Protein engineering.

[100]  A. Fersht,et al.  Cooperative binding of tetrameric p53 to DNA. , 2004, Journal of molecular biology.

[101]  Axel T. Brunger,et al.  X-PLOR Version 3.1: A System for X-ray Crystallography and NMR , 1992 .

[102]  A. Jerschow,et al.  Suppression of Convection Artifacts in Stimulated-Echo Diffusion Experiments. Double-Stimulated-Echo Experiments , 1997 .

[103]  J. Mackay,et al.  Measuring macromolecular diffusion using heteronuclear multiple-quantum pulsed-field-gradient NMR , 1997, Journal of biomolecular NMR.

[104]  V. Zhurkin,et al.  p53-induced DNA bending and twisting: p53 tetramer binds on the outer side of a DNA loop and increases DNA twisting. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[105]  Charles S. Johnson,et al.  Resolution of discrete and continuous molecular size distributions by means of diffusion-ordered 2D NMR spectroscopy , 1993 .

[106]  L. Hwang,et al.  Design and Construction of a Pulsed Field-Gradient NMR Probe for a High-Field Superconducting Magnet , 1994 .

[107]  Alex D. Bain,et al.  Chemical exchange in NMR , 2003 .

[108]  Johannes Buchner,et al.  p53 contains large unstructured regions in its native state. , 2002, Journal of molecular biology.

[109]  S. Lalith Talagala,et al.  Introduction to magnetic resonance imaging , 1991 .

[110]  R. Ozawa,et al.  A comprehensive two-hybrid analysis to explore the yeast protein interactome , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[111]  J. Kucharczyk,et al.  Early detection of regional cerebral ischemia in cats: Comparison of diffusion‐ and T2‐weighted MRI and spectroscopy , 1990, Magnetic resonance in medicine.

[112]  G. Morris,et al.  Pulse sequences for high‐resolution diffusion‐ordered spectroscopy (HR‐DOSY) , 1998 .

[113]  Alexej Jerschow Thermal convection currents in NMR: flow profiles and implications for coherence pathway selection , 2000, Journal of magnetic resonance.

[114]  A. Levine p53, the Cellular Gatekeeper for Growth and Division , 1997, Cell.

[115]  Irving J. Lowe,et al.  A modified pulsed gradient technique for measuring diffusion in the presence of large background gradients , 1980 .

[116]  P. Bork,et al.  Functional organization of the yeast proteome by systematic analysis of protein complexes , 2002, Nature.

[117]  P. Kuchel,et al.  Effect of nonrectangular field gradient pulses in the stejskal and tanner ( diffusion) pulse sequence , 1991 .

[118]  S. O’Donoghue,et al.  NMR studies of the aggregation of glucagon‐like peptide‐1: formation of a symmetric helical dimer , 2002, FEBS letters.

[119]  T Sun,et al.  Pulsed field gradient stimulated echo methods for improved NMR diffusion measurements in heterogeneous systems , 1989 .

[120]  R. Tycko,et al.  Nuclear Magnetic Resonance Probes of Molecular Dynamics , 2003 .

[121]  C. Toniolo,et al.  First Step Toward the Quantitative Identification of Peptide 310-Helix Conformation with NMR Spectroscopy: NMR and X-ray Diffraction Structural Analysis of a Fully-Developed 310-Helical Peptide Standard , 1998 .