Numerical integration of subtraction terms

Numerical approaches to higher-order calculations often employ subtraction terms, both for the real emission and the virtual corrections. These sub traction terms have to be added back. In this paper we show that at NLO the real subtraction terms, the virtual subtraction terms, the integral representations of the field renormalis ation constants and ‐ in the case of initial-state partons ‐ the integral representation for th e collinear counterterm can be grouped together to give finite integrals, which can be evaluated num erically. This is useful for an extension towards NNLO.

[1]  G. Rodrigo,et al.  Tree-loop duality relation beyond single poles , 2012, 1211.5048.

[2]  G. Zanderighi,et al.  One-loop calculations in quantum field theory: From Feynman diagrams to unitarity cuts , 2011, 1105.4319.

[3]  Z. Trocsanyi,et al.  Three-Jet Production in Electron-Positron Collisions at Next-to-Next-to-Leading Order Accuracy. , 2016, Physical review letters.

[4]  D. Soper,et al.  Numerical integration of one-loop Feynman diagrams for N-photon amplitudes , 2006, hep-ph/0610028.

[5]  Tim Stelzer,et al.  Automation of next-to-leading order computations in QCD: the FKS subtraction , 2009, 0908.4272.

[6]  Theodor Schuster Color ordering in QCD , 2013, 1311.6296.

[7]  S. Weinzierl,et al.  Decomposition of one-loop QCD amplitudes into primitive amplitudes based on shuffle relations , 2013, 1310.0413.

[8]  Stefan Weinzierl,et al.  Numerical NLO QCD calculations , 2010, 1010.4187.

[9]  S. Weinzierl,et al.  Infrared singularities in one-loop amplitudes , 2010, 1006.4609.

[10]  S. Weinzierl,et al.  Simple formula for the infrared singular part of the integrand of one-loop QCD amplitudes , 2009, 0912.1680.

[11]  Stefan Weinzierl,et al.  Efficiency improvements for the numerical computation of NLO corrections , 2012, 1205.2096.

[12]  M. Worek,et al.  Polarizing the dipoles , 2009, 0905.0883.

[13]  R. Stephenson A and V , 1962, The British journal of ophthalmology.

[14]  Peter Uwer,et al.  Numerical evaluation of virtual corrections to multi-jet production in massless QCD , 2012, Comput. Phys. Commun..

[15]  M. Kramer,et al.  An alternative subtraction scheme for next-to-leading order QCD calculations , 2010, 1012.4948.

[16]  Stefan Weinzierl,et al.  Direct contour deformation with arbitrary masses in the loop , 2012, 1208.4088.

[17]  Giulia Zanderighi,et al.  Preprint typeset in JHEP style- HYPER VERSION Fermilab-PUB-08-436-T , 2022 .

[18]  S. Weinzierl,et al.  NLO corrections to Z production in association with several jets , 2014, 1407.0203.

[19]  Félix Driencourt-Mangin,et al.  Four-dimensional unsubtraction from the loop-tree duality , 2016, 1604.06699.

[20]  R. Hernández-Pinto,et al.  Gauge theories in four dimensions , 2015 .

[21]  Z. Trocsanyi,et al.  A New subtraction scheme for computing QCD jet cross sections at next-to-leading order accuracy , 2006, hep-ph/0609041.

[22]  German Rodrigo,et al.  From Loops to Trees By-passing Feynman's Theorem , 2008, 0804.3170.

[23]  S. Dittmaier,et al.  Polarized QED splittings of massive fermions and dipole subtraction for non-collinear-safe observables , 2008, 0802.1405.

[24]  Germán Rodrigo,et al.  Numerical implementation of the loop–tree duality method , 2015, 1510.00187.

[25]  S. Frixione,et al.  Colourful FKS subtraction , 2011, 1106.0155.

[26]  Siglas de Palabras a D. g. , 2013 .

[27]  Stefan Weinzierl,et al.  Direct numerical integration for multi-loop integrals , 2012, 1211.0509.

[28]  Z. Trocsanyi,et al.  A subtraction scheme for computing QCD jet cross sections at NNLO: integrating the iterated singly-unresolved subtraction terms , 2010, 1011.1909.

[29]  H. Ita,et al.  Colour decompositions of multi-quark one-loop QCD amplitudes , 2011, 1111.4193.

[30]  Z. Trocsanyi,et al.  Analytic integration of real-virtual counterterms in NNLO jet cross sections i , 2008 .

[31]  Davison E. Soper,et al.  Parton showers with quantum interference , 2007, 0706.0017.

[32]  German Rodrigo,et al.  On the singular behaviour of scattering amplitudes in quantum field theory , 2014, 1405.7850.

[33]  S. Weinzierl,et al.  Next-to-leading-order results for five, six, and seven jets in electron-positron annihilation. , 2011, Physical review letters.