Numerical integration of subtraction terms
暂无分享,去创建一个
[1] G. Rodrigo,et al. Tree-loop duality relation beyond single poles , 2012, 1211.5048.
[2] G. Zanderighi,et al. One-loop calculations in quantum field theory: From Feynman diagrams to unitarity cuts , 2011, 1105.4319.
[3] Z. Trocsanyi,et al. Three-Jet Production in Electron-Positron Collisions at Next-to-Next-to-Leading Order Accuracy. , 2016, Physical review letters.
[4] D. Soper,et al. Numerical integration of one-loop Feynman diagrams for N-photon amplitudes , 2006, hep-ph/0610028.
[5] Tim Stelzer,et al. Automation of next-to-leading order computations in QCD: the FKS subtraction , 2009, 0908.4272.
[6] Theodor Schuster. Color ordering in QCD , 2013, 1311.6296.
[7] S. Weinzierl,et al. Decomposition of one-loop QCD amplitudes into primitive amplitudes based on shuffle relations , 2013, 1310.0413.
[8] Stefan Weinzierl,et al. Numerical NLO QCD calculations , 2010, 1010.4187.
[9] S. Weinzierl,et al. Infrared singularities in one-loop amplitudes , 2010, 1006.4609.
[10] S. Weinzierl,et al. Simple formula for the infrared singular part of the integrand of one-loop QCD amplitudes , 2009, 0912.1680.
[11] Stefan Weinzierl,et al. Efficiency improvements for the numerical computation of NLO corrections , 2012, 1205.2096.
[12] M. Worek,et al. Polarizing the dipoles , 2009, 0905.0883.
[13] R. Stephenson. A and V , 1962, The British journal of ophthalmology.
[14] Peter Uwer,et al. Numerical evaluation of virtual corrections to multi-jet production in massless QCD , 2012, Comput. Phys. Commun..
[15] M. Kramer,et al. An alternative subtraction scheme for next-to-leading order QCD calculations , 2010, 1012.4948.
[16] Stefan Weinzierl,et al. Direct contour deformation with arbitrary masses in the loop , 2012, 1208.4088.
[17] Giulia Zanderighi,et al. Preprint typeset in JHEP style- HYPER VERSION Fermilab-PUB-08-436-T , 2022 .
[18] S. Weinzierl,et al. NLO corrections to Z production in association with several jets , 2014, 1407.0203.
[19] Félix Driencourt-Mangin,et al. Four-dimensional unsubtraction from the loop-tree duality , 2016, 1604.06699.
[20] R. Hernández-Pinto,et al. Gauge theories in four dimensions , 2015 .
[21] Z. Trocsanyi,et al. A New subtraction scheme for computing QCD jet cross sections at next-to-leading order accuracy , 2006, hep-ph/0609041.
[22] German Rodrigo,et al. From Loops to Trees By-passing Feynman's Theorem , 2008, 0804.3170.
[23] S. Dittmaier,et al. Polarized QED splittings of massive fermions and dipole subtraction for non-collinear-safe observables , 2008, 0802.1405.
[24] Germán Rodrigo,et al. Numerical implementation of the loop–tree duality method , 2015, 1510.00187.
[25] S. Frixione,et al. Colourful FKS subtraction , 2011, 1106.0155.
[26] Siglas de Palabras. a D. g. , 2013 .
[27] Stefan Weinzierl,et al. Direct numerical integration for multi-loop integrals , 2012, 1211.0509.
[28] Z. Trocsanyi,et al. A subtraction scheme for computing QCD jet cross sections at NNLO: integrating the iterated singly-unresolved subtraction terms , 2010, 1011.1909.
[29] H. Ita,et al. Colour decompositions of multi-quark one-loop QCD amplitudes , 2011, 1111.4193.
[30] Z. Trocsanyi,et al. Analytic integration of real-virtual counterterms in NNLO jet cross sections i , 2008 .
[31] Davison E. Soper,et al. Parton showers with quantum interference , 2007, 0706.0017.
[32] German Rodrigo,et al. On the singular behaviour of scattering amplitudes in quantum field theory , 2014, 1405.7850.
[33] S. Weinzierl,et al. Next-to-leading-order results for five, six, and seven jets in electron-positron annihilation. , 2011, Physical review letters.