A high-order immersed boundary method for acoustic wave scattering and low-Mach number flow-induced sound in complex geometries

A new sharp-interface immersed boundary method based approach for the computation of low-Mach number flow-induced sound around complex geometries is described. The underlying approach is based on a hydrodynamic/acoustic splitting technique where the incompressible flow is first computed using a second-order accurate immersed boundary solver. This is followed by the computation of sound using the linearized perturbed compressible equations (LPCE). The primary contribution of the current work is the development of a versatile, high-order accurate immersed boundary method for solving the LPCE in complex domains. This new method applies the boundary condition on the immersed boundary to a high-order by combining the ghost-cell approach with a weighted least-squares error method based on a high-order approximating polynomial. The method is validated for canonical acoustic wave scattering and flow-induced noise problems. Applications of this technique to relatively complex cases of practical interest are also presented.

[1]  Jean-François Remacle,et al.  Optimal numerical parameterization of discontinuous Galerkin method applied to wave propagation problems , 2007, J. Comput. Phys..

[2]  Scattering of sound from a spatially distributed, spherically symmetric source by a sphere , 1995 .

[3]  Rajat Mittal,et al.  An immersed-boundary method for flow-structure interaction in biological systems with application to phonation , 2008, J. Comput. Phys..

[4]  Gianluca Iaccarino,et al.  IMMERSED BOUNDARY METHODS , 2005 .

[5]  M. Y. Hussaini,et al.  An Analysis of the Discontinuous Galerkin Method for Wave Propagation Problems , 1999 .

[6]  Antony Jameson,et al.  Numerical solution of the Euler equation for compressible inviscid fluids , 1985 .

[7]  Rajat Mittal,et al.  A versatile sharp interface immersed boundary method for incompressible flows with complex boundaries , 2008, J. Comput. Phys..

[8]  M. Döllinger,et al.  A 2D finite-element scheme for fluid–solid–acoustic interactions and its application to human phonation , 2009 .

[9]  H. Fasel,et al.  A high-order immersed interface method for simulating unsteady incompressible flows on irregular domains , 2005 .

[10]  Gunnar Fant,et al.  Glottal flow: models and interaction , 1986 .

[11]  R. Mittal,et al.  A Computational Study of the Effect of False Vocal Folds on Glottal Flow and Vocal Fold Vibration During Phonation , 2009, Annals of Biomedical Engineering.

[12]  S. Lele Compact finite difference schemes with spectral-like resolution , 1992 .

[13]  Michele Napolitano,et al.  AN IMMERSED-BOUNDARY METHOD FOR COMPRESSIBLE VISCOUS FLOWS , 2006 .

[14]  J. E. Glynn,et al.  Numerical Recipes: The Art of Scientific Computing , 1989 .

[15]  Wei Zhao,et al.  Computational aeroacoustics of phonation, part I: Computational methods and sound generation mechanisms. , 2002, The Journal of the Acoustical Society of America.

[16]  B. Mohammadi,et al.  An Immersed Boundary Method for Aeroacoustics Problems , 2008 .

[17]  Miguel R. Visbal,et al.  Further development of a Navier-Stokes solution procedure based on higher-order formulas , 1999 .

[18]  William H. Press,et al.  Numerical recipes in C. The art of scientific computing , 1987 .

[19]  J. Seo,et al.  Aerodynamic noise prediction for long-span bodies , 2007 .

[20]  Zhilin Li A Fast Iterative Algorithm for Elliptic Interface Problems , 1998 .

[21]  Matthew Wright,et al.  Aeroacoustics of automotive vents , 2005 .

[22]  Miguel R. Visbal,et al.  High-Order-Accurate Methods for Complex Unsteady Subsonic Flows , 1999 .

[23]  Sound produced by a vortex interacting with a cavitated wake , 2005, Journal of Fluid Mechanics.

[24]  Y. Bae,et al.  Computation of phonation aeroacoustics by an INS/PCE splitting method , 2008 .

[25]  Jean-Antoine Désidéri,et al.  Numerical methods for the Euler equations of fluid dynamics , 1985 .

[26]  A. Gourdin,et al.  Applied Numerical Methods , 2004 .

[27]  Oleg V. Vasilyev,et al.  A Brinkman penalization method for compressible flows in complex geometries , 2007, J. Comput. Phys..

[28]  Damiano Casalino,et al.  GFD Predictions of Fan Noise Propagation , 2004 .

[29]  M. Lighthill On sound generated aerodynamically I. General theory , 1952, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[30]  J. Seo,et al.  Perturbed Compressible Equations for Aeroacoustic Noise Prediction at Low Mach Numbers , 2005 .

[31]  C. Williamson Vortex Dynamics in the Cylinder Wake , 1996 .

[32]  R. Mittal,et al.  Numerical study of pulsatile flow in a constricted channel , 2003, Journal of Fluid Mechanics.

[33]  J. Seo,et al.  A hybrid prediction method for low-subsonic turbulent flow noise , 2010 .

[34]  J. C. Hardin,et al.  Second Computational Aeroacoustics (CAA) Workshop on Benchmark Problems , 1997 .

[35]  Wim Desmet,et al.  A 2D Discontinuous Galerkin method for aeroacoustics with curved boundary treatment , 2008 .

[36]  T. Terai On calculation of sound fields around three dimensional objects by integral equation methods , 1980 .

[37]  M. Visbal,et al.  A General Buffer Zone-type Non-Reflecting Boundary Condition for Computational Aeroacoustics , 2003 .

[38]  Yijun Liu,et al.  An adaptive fast multipole boundary element method for three-dimensional acoustic wave problems based on the Burton–Miller formulation , 2007 .

[39]  Douglas A. Reynolds,et al.  Modeling of the glottal flow derivative waveform with application to speaker identification , 1999, IEEE Trans. Speech Audio Process..

[40]  Scott E. Sherer,et al.  High-order compact finite-difference methods on general overset grids , 2005 .

[41]  Michael Dumbser,et al.  ADER discontinuous Galerkin schemes for aeroacoustics , 2005 .

[42]  M. Imregun,et al.  3-Dimensional Noise Propagation Using a Cartesian Grid , 2004 .

[43]  Alexandre J. Chorin,et al.  On the Convergence of Discrete Approximations to the Navier-Stokes Equations , 1969 .

[44]  Min Liu,et al.  Aerodynamic noise propagation simulation using immersed boundary method and finite volume optimized prefactored compact scheme , 2008 .

[45]  M. E. Goldstein,et al.  A generalized acoustic analogy , 2003, Journal of Fluid Mechanics.

[46]  M. S. Howe,et al.  ON THE HYDROACOUSTICS OF A TRAILING EDGE WITH A DETACHED FLAP , 2001 .

[47]  William H. Press,et al.  Numerical Recipes 3rd Edition: The Art of Scientific Computing , 2007 .

[48]  Coarticulation • Suprasegmentals,et al.  Acoustic Phonetics , 2019, The SAGE Encyclopedia of Human Communication Sciences and Disorders.

[49]  M. Stone Imaging the tongue and vocal tract. , 1991, The British journal of disorders of communication.

[50]  R. Sepponen,et al.  Computer-Based Detection and Analysis of Heart Sound and Murmur , 2005, Annals of Biomedical Engineering.

[51]  Pietro De Palma,et al.  An immersed boundary method for compressible flows using local grid refinement , 2007, J. Comput. Phys..

[52]  Jeffrey L. Young,et al.  Practical aspects of higher-order numerical schemes for wave propagation phenomena , 1999 .

[53]  T. Colonius,et al.  Computational aeroacoustics: progress on nonlinear problems of sound generation , 2004 .

[54]  Jung Hee Seo,et al.  Linearized perturbed compressible equations for low Mach number aeroacoustics , 2006, J. Comput. Phys..

[55]  Scott E Sherer Scattering of sound from axisymetric sources by multiple circular cylinders. , 2004, The Journal of the Acoustical Society of America.

[56]  R. Henderson Details of the drag curve near the onset of vortex shedding , 1995 .

[57]  C. Tam,et al.  Dispersion-relation-preserving finite difference schemes for computational acoustics , 1993 .

[58]  Ingo R. Titze,et al.  Principles of voice production , 1994 .

[59]  Miguel R. Visbal,et al.  On the use of higher-order finite-difference schemes on curvilinear and deforming meshes , 2002 .

[60]  Christophe Bailly,et al.  Progress in Direct Noise Computation , 2010 .

[61]  Rajat Mittal,et al.  A sharp interface immersed boundary method for compressible viscous flows , 2007, J. Comput. Phys..

[62]  J. Hardin,et al.  An acoustic/viscous splitting technique for computational aeroacoustics , 1994 .