New q-ary quantum MDS codes with distances bigger than $$\frac{q}{2}$$q2

The construction of quantum MDS codes has been studied by many authors. We refer to the table in page 1482 of (IEEE Trans Inf Theory 61(3):1474–1484, 2015) for known constructions. However, there have been constructed only a few q-ary quantum MDS $$[[n,n-2d+2,d]]_q$$[[n,n-2d+2,d]]q codes with minimum distances $$d>\frac{q}{2}$$d>q2 for sparse lengths $$n>q+1$$n>q+1. In the case $$n=\frac{q^2-1}{m}$$n=q2-1m where $$m|q+1$$m|q+1 or $$m|q-1$$m|q-1 there are complete results. In the case $$n=\frac{q^2-1}{m}$$n=q2-1m while $$m|q^2-1$$m|q2-1 is neither a factor of $$q-1$$q-1 nor $$q+1$$q+1, no q-ary quantum MDS code with $$d> \frac{q}{2}$$d>q2 has been constructed. In this paper we propose a direct approach to construct Hermitian self-orthogonal codes over $$\mathbf{F}_{q^2}$$Fq2. Then we give some new q-ary quantum codes in this case. Moreover many new q-ary quantum MDS codes with lengths of the form $$\frac{w(q^2-1)}{u}$$w(q2-1)u and minimum distances $$d > \frac{q}{2}$$d>q2 are presented.

[1]  Shixin Zhu,et al.  New quantum MDS codes derived from constacyclic codes , 2014, Quantum Inf. Process..

[2]  Keqin Feng,et al.  Quantum codes [[6, 2, 3]]p and [[7, 3, 3]]p (p >= 3) exist , 2002, IEEE Trans. Inf. Theory.

[3]  Pradeep Kiran Sarvepalli,et al.  On Quantum and Classical BCH Codes , 2006, IEEE Transactions on Information Theory.

[4]  O. Antoine,et al.  Theory of Error-correcting Codes , 2022 .

[5]  Giuliano G. La Guardia,et al.  New Quantum MDS Codes , 2011, IEEE Transactions on Information Theory.

[6]  Chaoping Xing,et al.  Euclidean and Hermitian Self-Orthogonal Algebraic Geometry Codes and Their Application to Quantum Codes , 2012, IEEE Transactions on Information Theory.

[7]  Martin Rötteler,et al.  On quantum MDS codes , 2004, International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings..

[8]  Shixin Zhu,et al.  Constacyclic Codes and Some New Quantum MDS Codes , 2014, IEEE Transactions on Information Theory.

[9]  Raymond Laflamme,et al.  A Theory of Quantum Error-Correcting Codes , 1996 .

[10]  Laflamme,et al.  Perfect Quantum Error Correcting Code. , 1996, Physical review letters.

[11]  F. MacWilliams,et al.  The Theory of Error-Correcting Codes , 1977 .

[12]  Zhuo Li,et al.  Quantum generalized Reed-Solomon codes: Unified framework for quantum MDS codes , 2008, ArXiv.

[13]  Chaoping Xing,et al.  A Construction of New Quantum MDS Codes , 2013, IEEE Transactions on Information Theory.

[14]  Alexei E. Ashikhmin,et al.  Nonbinary quantum stabilizer codes , 2001, IEEE Trans. Inf. Theory.

[15]  Martin Rötteler,et al.  Quantum MDS codes over small fields , 2015, 2015 IEEE International Symposium on Information Theory (ISIT).

[16]  Chaoping Xing,et al.  Application of Classical Hermitian Self-Orthogonal MDS Codes to Quantum MDS Codes , 2010, IEEE Transactions on Information Theory.

[17]  Shixin Zhu,et al.  New Quantum MDS Codes From Negacyclic Codes , 2013, IEEE Transactions on Information Theory.

[18]  Shor,et al.  Scheme for reducing decoherence in quantum computer memory. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[19]  Andrew M. Steane Enlargement of Calderbank-Shor-Steane quantum codes , 1999, IEEE Trans. Inf. Theory.

[20]  Guanghui Zhang,et al.  Application of Constacyclic Codes to Quantum MDS Codes , 2014, IEEE Transactions on Information Theory.

[21]  T. Beth,et al.  On optimal quantum codes , 2003, quant-ph/0312164.