A heterogeneous multiscale modeling framework for hierarchical systems of partial differential equations

This paper presents a heterogeneous multiscale method with efficient interscale coupling for scale-dependent phenomena modeled via a hierarchy of partial differential equations. Physics at the global level is governed by one set of partial differential equations, whereas features in the solution that are beyond the resolution capability of the coarser models are accounted for by the next refined set of differential equations. The proposed method seamlessly integrates different sets of equations governing physics at various levels, and represents a consistent top-down and bottom-up approach to multi-model modeling problems. For the top-down coupling of equations, this method provides a variational residual-based embedding of the response from the coarser or global system equations, into the corresponding local or refined system equations. To account for the effects of local phenomena on the global response of the system, the method also accommodates bottom-up embedding of the response from the local or refined mathematical models into the global or coarser model equations. The resulting framework thus provides a consistent way of coupling physics between disparate partial differential equations by means of up-scaling and down-scaling of the mathematical models. An integral aspect of the proposed framework is an uncertainty quantification and error estimation module. The structure of this error estimator is investisated and its mathematical implications are delineated.

[1]  M. Ortiz,et al.  An adaptive finite element approach to atomic-scale mechanics—the quasicontinuum method , 1997, cond-mat/9710027.

[2]  Tayfun E. Tezduyar,et al.  Sequentially-Coupled Arterial Fluid-Structure Interaction (SCAFSI) technique , 2009 .

[3]  Kumbakonam R. Rajagopal,et al.  ON A HIERARCHY OF APPROXIMATE MODELS FOR FLOWS OF INCOMPRESSIBLE FLUIDS THROUGH POROUS SOLIDS , 2007 .

[4]  K. M. Carpenter Note on the paper ‘Radiation conditions for the lateral boundaries of limited‐area numerical models’ , 1982 .

[5]  Ted Belytschko,et al.  Coupling Methods for Continuum Model with Molecular Model , 2003 .

[6]  J. Shukla,et al.  On the Strategy of Combining Coarse and Fine Grid Meshes in Numerical Weather Prediction , 1973 .

[7]  Dan Givoli,et al.  The Global-Regional Model Interaction Problem: Analysis of Carpenter's Scheme and Related Issues , 2006 .

[8]  Thomas J. R. Hughes,et al.  A stabilized mixed finite element method for Darcy flow , 2002 .

[9]  J. Fish,et al.  Multi-grid method for periodic heterogeneous media Part 2: Multiscale modeling and quality control in multidimensional case , 1995 .

[10]  Tayfun E. Tezduyar,et al.  Enhanced-discretization space time technique (EDSTT) , 2004 .

[11]  T. Tezduyar Computation of moving boundaries and interfaces and stabilization parameters , 2003 .

[12]  K. R. Rajagopal,et al.  Simple flows of fluids with pressure–dependent viscosities , 2001, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[13]  D. Durran Numerical methods for wave equations in geophysical fluid dynamics , 1999 .

[14]  Tayfun E. Tezduyar,et al.  EDICT for 3D computation of two-fluid interfaces , 2000 .

[15]  Assyr Abdulle,et al.  Finite Element Heterogeneous Multiscale Methods with Near Optimal Computational Complexity , 2008, Multiscale Model. Simul..

[16]  Clifford Ambrose Truesdell Historical Introit The origins of rational thermodynamics , 1984 .

[17]  E Weinan,et al.  The Heterognous Multiscale Methods , 2003 .

[18]  T. Hughes Multiscale phenomena: Green's functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods , 1995 .

[19]  E Weinan,et al.  The Heterogeneous Multi-Scale Method , 2002 .

[20]  H. Davies,et al.  A lateral boundary formulation for multi-level prediction models. [numerical weather forecasting , 1976 .

[21]  Franco Brezzi,et al.  $b=\int g$ , 1997 .

[22]  Mohamed Hamdy Doweidar,et al.  The multiscale approach to error estimation and adaptivity , 2006 .

[23]  D. Givoli,et al.  High-order non-reflecting boundary scheme for time-dependent waves , 2003 .

[24]  Ronald E. Miller,et al.  Atomistic/continuum coupling in computational materials science , 2003 .

[25]  Martin W. Heinstein,et al.  Consistent mesh tying methods for topologically distinct discretized surfaces in non‐linear solid mechanics , 2003 .

[26]  Barbara Wohlmuth,et al.  A new dual mortar method for curved interfaces: 2D elasticity , 2005 .

[27]  Alan J. Thorpe,et al.  Radiation conditions for the lateral boundaries of limited‐area numerical models , 1981 .

[28]  Marek Behr,et al.  Enhanced-Discretization Interface-Capturing Technique (EDICT) for computation of unsteady flows with interfaces , 1998 .

[29]  C. Felippa,et al.  A simple algorithm for localized construction of non‐matching structural interfaces , 2002 .

[30]  Clark R. Dohrmann,et al.  A method for connecting dissimilar finite element meshes in two dimensions , 2000 .

[31]  Tayfun E. Tezduyar,et al.  Interface projection techniques for fluid–structure interaction modeling with moving-mesh methods , 2008 .

[32]  A. Masud,et al.  A stabilized mixed finite element method for the first‐order form of advection–diffusion equation , 2008 .

[33]  Thomas J. R. Hughes,et al.  Mixed Discontinuous Galerkin Methods for Darcy Flow , 2005, J. Sci. Comput..

[34]  Charbel Farhat,et al.  Design and analysis of robust ALE time-integrators for the solution of unsteady flow problems on moving grids , 2004 .

[35]  Arif Masud,et al.  A variational multiscale stabilized formulation for the incompressible Navier–Stokes equations , 2009 .

[36]  N. Zabaras,et al.  Modeling multiscale diffusion processes in random heterogeneous media , 2008 .

[37]  Thomas Y. Hou,et al.  A Multiscale Finite Element Method for Elliptic Problems in Composite Materials and Porous Media , 1997 .

[38]  L. Franca,et al.  A hierarchical multiscale framework for problems with multiscale source terms , 2008 .

[39]  A. Masud,et al.  A multiscale framework for computational nanomechanics: Application to the modeling of carbon nanotubes , 2009 .

[40]  David J. Benson,et al.  Sliding interfaces with contact-impact in large-scale Lagrangian computations , 1985 .

[41]  T. Hughes,et al.  The variational multiscale method—a paradigm for computational mechanics , 1998 .

[42]  J. Beckers,et al.  Two-way nested model of mesoscale circulation features in the Ligurian Sea , 2005 .

[43]  Björn Engquist,et al.  Heterogeneous multiscale methods for stiff ordinary differential equations , 2005, Math. Comput..

[44]  J. Tinsley Oden,et al.  Estimation of local modeling error and goal-oriented adaptive modeling of heterogeneous materials: I. Error estimates and adaptive algorithms , 2000 .

[45]  A Multiscale Framework for Computational Nanomechanics: Application to Carbon Nanotubes , 2005 .

[46]  M. Ostoja-Starzewski Material spatial randomness: From statistical to representative volume element☆ , 2006 .

[47]  Ted Belytschko,et al.  On the L2 and the H1 couplings for an overlapping domain decomposition method using Lagrange multipliers , 2007 .

[48]  Gregory J. Wagner,et al.  Coupling of atomistic and continuum simulations using a bridging scale decomposition , 2003 .

[49]  Tayfun E. Tezduyar,et al.  Multiscale sequentially-coupled arterial FSI technique , 2010 .

[50]  William A. Curtin,et al.  Multiscale plasticity modeling: coupled atomistics and discrete dislocation mechanics , 2004 .