Unsupervised Image Reconstruction for Gradient‐Domain Volumetric Rendering
暂无分享,去创建一个
Lu Wang | Qiang Sun | Yanning Xu | Beibei Wang | Zilin Xu | Lu Wang | Qiang Sun | Yanning Xu | Zilin Xu | Beibei Wang
[1] Per H. Christensen,et al. Efficient simulation of light transport in scenes with participating media using photon maps , 1998, SIGGRAPH.
[2] Matthias Zwicker,et al. The Beam Radiance Estimate for Volumetric Photon Mapping , 2008, SIGGRAPH '08.
[3] Jaakko Lehtinen,et al. Temporal gradient-domain path tracing , 2016, ACM Trans. Graph..
[4] Jian Sun,et al. Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
[5] Nicolas Holzschuch,et al. A detail preserving neural network model for Monte Carlo denoising , 2020, Computational Visual Media.
[6] Jaakko Lehtinen,et al. Sample-based Monte Carlo denoising using a kernel-splatting network , 2019, ACM Trans. Graph..
[7] Michael F. Cohen,et al. Fourier Analysis of the 2D Screened Poisson Equation for Gradient Domain Problems , 2008, ECCV.
[8] Jie Guo,et al. GradNet , 2019, ACM Trans. Graph..
[9] Wojciech Jarosz,et al. Beyond points and beams , 2017, ACM Trans. Graph..
[10] Pablo Bauszat,et al. Gradient-domain path reusing , 2017, ACM Trans. Graph..
[11] Zheng Zeng,et al. Denoising Stochastic Progressive Photon Mapping Renderings Using a Multi-Residual Network , 2020, Journal of Computer Science and Technology.
[12] Derek Nowrouzezahrai,et al. Gradient-Domain Vertex Connection and Merging , 2017, EGSR.
[13] Derek Nowrouzezahrai,et al. Gradient‐Domain Photon Density Estimation , 2017, Comput. Graph. Forum.
[14] Jaakko Lehtinen,et al. Gradient-domain path tracing , 2015, ACM Trans. Graph..
[15] Derek Nowrouzezahrai,et al. Gradient-domain volumetric photon density estimation , 2018, ACM Trans. Graph..
[16] Jaakko Lehtinen,et al. Gradient-domain metropolis light transport , 2013, ACM Trans. Graph..
[17] Rui Wang,et al. Adversarial Monte Carlo denoising with conditioned auxiliary feature modulation , 2019, ACM Trans. Graph..
[18] Mark Meyer,et al. Denoising with kernel prediction and asymmetric loss functions , 2018, ACM Trans. Graph..
[19] Kenny Mitchell,et al. Nonlinearly Weighted First‐order Regression for Denoising Monte Carlo Renderings , 2016, Comput. Graph. Forum.
[20] Bui Minh Vu,et al. Redefining A in RGBA , 2017, ACM Trans. Graph..
[21] Mark Meyer,et al. Kernel-predicting convolutional networks for denoising Monte Carlo renderings , 2017, ACM Trans. Graph..
[22] Jan Novák,et al. Image-space control variates for rendering , 2016, ACM Trans. Graph..
[23] Jaakko Lehtinen,et al. Deep convolutional reconstruction for gradient-domain rendering , 2019, ACM Trans. Graph..
[24] Thomas Brox,et al. U-Net: Convolutional Networks for Biomedical Image Segmentation , 2015, MICCAI.
[25] Derek Nowrouzezahrai,et al. Unifying points, beams, and paths in volumetric light transport simulation , 2014, ACM Trans. Graph..
[26] Bochang Moon,et al. Gradient Outlier Removal for Gradient‐Domain Path Tracing , 2019, Comput. Graph. Forum.
[27] Matthias Zwicker,et al. Regularizing Image Reconstruction for Gradient‐Domain Rendering with Feature Patches , 2016, Comput. Graph. Forum.
[28] Jaakko Lehtinen,et al. Gradient-Domain Bidirectional Path Tracing , 2015, EGSR.
[29] Tien-Tsin Wong,et al. Deep residual learning for denoising Monte Carlo renderings , 2019, Computational Visual Media.