Posterior consistency in linear models under shrinkage priors
暂无分享,去创建一个
David B. Dunson | Waheed U. Bajwa | Jaeyong Lee | Nate Strawn | Artin Armagan | D. Dunson | W. Bajwa | Jaeyong Lee | A. Armagan | Nate Strawn
[1] Dominique Bontemps,et al. Bernstein von Mises Theorems for Gaussian Regression with increasing number of regressors , 2010, 1009.1370.
[2] R. Tibshirani. Regression Shrinkage and Selection via the Lasso , 1996 .
[3] Volkan Cevher,et al. Learning with Compressible Priors , 2009, NIPS.
[4] J. Bai,et al. Multifactor asset pricing with a large number of observable risk factors and unobservable common and group-specific factors , 2013 .
[5] Subhashis Ghosal,et al. Asymptotic normality of posterior distributions in high-dimensional linear models , 1999 .
[6] J. Griffin,et al. Inference with normal-gamma prior distributions in regression problems , 2010 .
[7] James G. Scott,et al. The horseshoe estimator for sparse signals , 2010 .
[8] E. George,et al. Journal of the American Statistical Association is currently published by American Statistical Association. , 2007 .
[9] G. Casella,et al. The Bayesian Lasso , 2008 .
[10] Mário A. T. Figueiredo. Adaptive Sparseness for Supervised Learning , 2003, IEEE Trans. Pattern Anal. Mach. Intell..
[11] Michael E. Tipping. Sparse Bayesian Learning and the Relevance Vector Machine , 2001, J. Mach. Learn. Res..
[12] Peng Zhao,et al. On Model Selection Consistency of Lasso , 2006, J. Mach. Learn. Res..
[13] M. Abramowitz,et al. Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables (National Bureau of Standards Applied Mathematics Series No. 55) , 1965 .
[14] David B. Dunson,et al. Generalized Beta Mixtures of Gaussians , 2011, NIPS.
[15] P. Bickel,et al. SIMULTANEOUS ANALYSIS OF LASSO AND DANTZIG SELECTOR , 2008, 0801.1095.
[16] P. Massart,et al. Adaptive estimation of a quadratic functional by model selection , 2000 .
[17] H. Zou. The Adaptive Lasso and Its Oracle Properties , 2006 .
[18] Christopher M. Bishop,et al. Variational Relevance Vector Machines , 2000, UAI.
[19] I. Johnstone,et al. Needles and straw in haystacks: Empirical Bayes estimates of possibly sparse sequences , 2004, math/0410088.
[20] D. Madigan,et al. Bayesian Model Averaging for Linear Regression Models , 1997 .
[21] Jaeyong Lee,et al. GENERALIZED DOUBLE PARETO SHRINKAGE. , 2011, Statistica Sinica.
[22] D. Owen. Handbook of Mathematical Functions with Formulas , 1965 .
[23] Wenjiang J. Fu,et al. Asymptotics for lasso-type estimators , 2000 .
[24] H. Zou,et al. One-step Sparse Estimates in Nonconcave Penalized Likelihood Models. , 2008, Annals of statistics.
[25] L. Schwartz. On Bayes procedures , 1965 .
[26] Wenxin Jiang. Bayesian variable selection for high dimensional generalized linear models : Convergence rates of the fitted densities , 2007, 0710.3458.
[27] Chris Hans. Bayesian lasso regression , 2009 .
[28] M. Clyde,et al. Mixtures of g Priors for Bayesian Variable Selection , 2008 .
[29] M. Yuan,et al. Efficient Empirical Bayes Variable Selection and Estimation in Linear Models , 2005 .
[30] Michael L. Littman,et al. Bayesian Adaptive Sampling for Variable Selection and Model Averaging , 2011 .
[31] Artin Armagan,et al. Variational Bridge Regression , 2009, AISTATS.
[32] Jianqing Fan,et al. Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties , 2001 .
[33] J. Griffin,et al. Bayesian adaptive lassos with non-convex penalization , 2007 .
[34] Edward I. George,et al. The Practical Implementation of Bayesian Model Selection , 2001 .