SciFab –a wafer‐level heterointegrated InP DHBT/SiGe BiCMOS foundry process for mm‐wave applications

We present a wafer‐level heterointegrated indium phosphide double heterobipolar transistor on silicon germanium bipolar‐complementary metal oxide semiconductor (InP DHBT on SiGe BiCMOS) process which relies on adhesive wafer bonding. Subcircuits are co‐designed in both technologies, SiGe BiCMOS and InP DHBT, with more than 300 GHz bandwidth microstrip interconnects. The 250 nm SiGe HBTs offer cutoff frequencies around 200 GHz, the 800 nm InP DHBTs exceed 350 GHz. Heterointegrated signal sources are demonstrated including a 328 GHz quadrupling source with −12 dBm RF output power. A common design kit for full InP DHBT/SiGe BiCMOS co‐design was set up. The technology is being opened to third‐party customers through IHP's multi‐purpose wafer foundry interface.

[1]  Huk Y. Cheh Electrodeposition of Gold by Pulsed Current , 1971 .

[2]  William H. Arnold Image Placement Differences Between 1:1 Projection Aligners And 10:1 Reduction Wafer Steppers , 1983, Advanced Lithography.

[3]  Matthias Rudolph,et al.  Unified model for collector charge in heterojunction bipolar transistors , 2002 .

[4]  C. Wipf,et al.  SiGe HBT technology with fT/fmax of 300GHz/500GHz and 2.0 ps CML gate delay , 2010, 2010 International Electron Devices Meeting.

[5]  Joe Zhou,et al.  Advanced Heterogeneous Integration of InP HBT and CMOS Si Technologies , 2010, 2010 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS).

[6]  E. Guiot,et al.  High Performance Mixed Signal Circuits Enabled by the Direct Monolithic Heterogeneous Integration of InP HBT and Si CMOS on a Silicon Substrate , 2010, 2010 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS).

[7]  Viktor Krozer,et al.  InP-Si BiCMOS Heterointegration Using a Substrate Transfer Process , 2013 .

[8]  W. Heinrich,et al.  InP-DHBT-on-BiCMOS Technology With $f_{T}/f_{\max}$ of 400/350 GHz for Heterogeneous Integrated Millimeter-Wave Sources , 2013, IEEE Transactions on Electron Devices.

[9]  B. Tillack,et al.  A 164 GHz hetero-integrated source in InP-on-BiCMOS technology , 2013, 2013 European Microwave Integrated Circuit Conference.

[10]  U. K. Mishra,et al.  N-polar GaN/InAlN/AlGaN MIS-HEMTs with 1.89 S/mm extrinsic transconductance, 4 A/mm drain current, 204 GHz fT and 405 GHz fmax , 2013, 71st Device Research Conference.

[11]  W. Heinrich,et al.  A 246 GHz Hetero-Integrated Frequency Source in InP-on-BiCMOS Technology , 2014, IEEE Microwave and Wireless Components Letters.

[12]  Viktor Krozer,et al.  Small- and large-signal modeling of InP HBTs in transferred-substrate technology , 2014 .

[13]  Rudolf Lachner,et al.  (Invited) Towards 0.7 Terahertz Silicon Germanium Heterojunction Bipolar Technology – The DOTSEVEN Project , 2014 .

[14]  Viktor Krozer,et al.  (Invited) Combining SiGe BiCMOS and InP Processing in an on-top of Chip Integration Approach , 2014 .

[15]  B. Tillack,et al.  Three-dimensional InP-DHBT on SiGe-BiCMOS integration by means of Benzocyclobutene based wafer bonding for MM-wave circuits , 2014 .

[16]  Mark J. W. Rodwell,et al.  An InGaAs/InP DHBT With Simultaneous $\text{f}_{\boldsymbol \tau }/\text{f}_{\text {max}}~404/901$ GHz and 4.3 V Breakdown Voltage , 2015, IEEE Journal of the Electron Devices Society.

[17]  W. Heinrich,et al.  A 330 GHz hetero-integrated source in InP-on-BiCMOS technology , 2015, 2015 IEEE MTT-S International Microwave Symposium.

[18]  W. Deal,et al.  First Demonstration of Amplification at 1 THz Using 25-nm InP High Electron Mobility Transistor Process , 2015, IEEE Electron Device Letters.