SciFab –a wafer‐level heterointegrated InP DHBT/SiGe BiCMOS foundry process for mm‐wave applications
暂无分享,去创建一个
Viktor Krozer | Anton Datsuk | Ralf Doerner | Maruf Hossain | D. Stoppel | Wolfgang Heinrich | F. J. Schmuckle | Bernd Tillack | Chafik Meliani | Marco Lisker | Nils Weimann | B. Janke | Olaf Krüger | M. I. Schukfeh | A. Kruger | Thualfiqar Al-Sawaf | B. Tillack | N. Weimann | W. Heinrich | V. Krozer | C. Meliani | M. Lisker | A. Krüger | R. Doerner | Maruf Hossain | F. Schmückle | D. Stoppel | Siddharta Sinha | O. Krüger | T. Al-Sawaf | B. Janke | S. Sinha | A. Datsuk
[1] Huk Y. Cheh. Electrodeposition of Gold by Pulsed Current , 1971 .
[2] William H. Arnold. Image Placement Differences Between 1:1 Projection Aligners And 10:1 Reduction Wafer Steppers , 1983, Advanced Lithography.
[3] Matthias Rudolph,et al. Unified model for collector charge in heterojunction bipolar transistors , 2002 .
[4] C. Wipf,et al. SiGe HBT technology with fT/fmax of 300GHz/500GHz and 2.0 ps CML gate delay , 2010, 2010 International Electron Devices Meeting.
[5] Joe Zhou,et al. Advanced Heterogeneous Integration of InP HBT and CMOS Si Technologies , 2010, 2010 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS).
[6] E. Guiot,et al. High Performance Mixed Signal Circuits Enabled by the Direct Monolithic Heterogeneous Integration of InP HBT and Si CMOS on a Silicon Substrate , 2010, 2010 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS).
[7] Viktor Krozer,et al. InP-Si BiCMOS Heterointegration Using a Substrate Transfer Process , 2013 .
[8] W. Heinrich,et al. InP-DHBT-on-BiCMOS Technology With $f_{T}/f_{\max}$ of 400/350 GHz for Heterogeneous Integrated Millimeter-Wave Sources , 2013, IEEE Transactions on Electron Devices.
[9] B. Tillack,et al. A 164 GHz hetero-integrated source in InP-on-BiCMOS technology , 2013, 2013 European Microwave Integrated Circuit Conference.
[10] U. K. Mishra,et al. N-polar GaN/InAlN/AlGaN MIS-HEMTs with 1.89 S/mm extrinsic transconductance, 4 A/mm drain current, 204 GHz fT and 405 GHz fmax , 2013, 71st Device Research Conference.
[11] W. Heinrich,et al. A 246 GHz Hetero-Integrated Frequency Source in InP-on-BiCMOS Technology , 2014, IEEE Microwave and Wireless Components Letters.
[12] Viktor Krozer,et al. Small- and large-signal modeling of InP HBTs in transferred-substrate technology , 2014 .
[13] Rudolf Lachner,et al. (Invited) Towards 0.7 Terahertz Silicon Germanium Heterojunction Bipolar Technology – The DOTSEVEN Project , 2014 .
[14] Viktor Krozer,et al. (Invited) Combining SiGe BiCMOS and InP Processing in an on-top of Chip Integration Approach , 2014 .
[15] B. Tillack,et al. Three-dimensional InP-DHBT on SiGe-BiCMOS integration by means of Benzocyclobutene based wafer bonding for MM-wave circuits , 2014 .
[16] Mark J. W. Rodwell,et al. An InGaAs/InP DHBT With Simultaneous $\text{f}_{\boldsymbol \tau }/\text{f}_{\text {max}}~404/901$ GHz and 4.3 V Breakdown Voltage , 2015, IEEE Journal of the Electron Devices Society.
[17] W. Heinrich,et al. A 330 GHz hetero-integrated source in InP-on-BiCMOS technology , 2015, 2015 IEEE MTT-S International Microwave Symposium.
[18] W. Deal,et al. First Demonstration of Amplification at 1 THz Using 25-nm InP High Electron Mobility Transistor Process , 2015, IEEE Electron Device Letters.