Muscle mechanical properties of adult and older rats submitted to exercise after immobilization

Objectives To describe the effects of immobilization, free remobilization and remobilization by physical exercise about mechanical properties of skeletal muscle of rats of two age groups. Methods 56 Wistar rats divided into two groups according to age, an adult group (five months) and an older group (15 months). These groups were subdivided in: control, immobilized, free remobilized and remobilized by physical exercise. The pelvic limb of rats was immobilized for seven days. The exercise protocol consisted of five swimming sessions, once per day and 25 minutes per session. The gastrocnemius muscle was subjected to tensile tests, and evaluated the properties: load at the maximum limit, stretching at the maximum limit and stiffness. Results The immobilization reduced the values of load at the maximum limit and the remobilization protocols were not sufficient to restore control levels in adult group and older rats. The stretching at the maximum limit differs only in the older group. Conclusions The immobilization reduces the muscle's ability to bear loads and exercise protocol tends to restore the default at control values in adult and older rats. The age factor only interfered in the stretching at the maximum limit, inducing a reduction of this property in the post-immobilization. Level of Evidence II, Investigating the Results of Treatment.

[1]  L. C. Carvalho,et al.  Propriedades mecânicas do músculo gastrocnêmio de ratas, imobilizado e posteriormente submetido a diferentes protocolos de alongamento , 2009 .

[2]  J. Lawler,et al.  Exercise training modulates the nitric oxide synthase profile in skeletal muscle from old rats. , 2009, The journals of gerontology. Series A, Biological sciences and medical sciences.

[3]  D. Bertoncello,et al.  Avaliação das propriedades mecânicas do músculo gastrocnêmio de ratas imobilizado e submetido à corrente russa , 2009 .

[4]  A. Shimano,et al.  Propriedades mecânicas do gastrocnêmio eletroestimulado pós-imobilização , 2009 .

[5]  A. Shimano,et al.  Recuperação mecânica muscular com laser , 2009 .

[6]  J. Matheus,et al.  Biomechanical Effects of Immobilization and Rehabilitation on the Skeletal Muscle of Trained and Sedentary Rats , 2008, Annals of Biomedical Engineering.

[7]  J. B. Volpon,et al.  Análise biomecânica dos efeitos da crioterapia no tratamento da lesão muscular aguda , 2008 .

[8]  J. Duarte,et al.  Age-induced morphological, biochemical, and functional alterations in isolated mitochondria from murine skeletal muscle. , 2008, The journals of gerontology. Series A, Biological sciences and medical sciences.

[9]  M. Jackson,et al.  Prolonged treadmill training increases HSP70 in skeletal muscle but does not affect age-related functional deficits. , 2008, American journal of physiology. Regulatory, integrative and comparative physiology.

[10]  L. C. Carvalho,et al.  Estimulação elétrica neuromuscular e o alongamento passivo manual na recuperação das propriedades mecânicas do músculo gastrocnêmio imobilizado , 2008 .

[11]  G. Bertolini,et al.  Influência do alongamento passivo em três repetições de 30 segundos a cada 48 horas em músculo sóleo imobilizado de ratos , 2007 .

[12]  R. J. Guirro,et al.  Curto período de imobilização provoca alterações morfométricas e mecânicas no músculo de rato , 2007 .

[13]  H. Degens Age-related skeletal muscle dysfunction: causes and mechanisms. , 2007, Journal of musculoskeletal & neuronal interactions.

[14]  J. B. Volpon,et al.  Efeitos da estimulação elétrica neuromuscular durante a imobilização nas propriedades mecânicas do músculo esquelético , 2007 .

[15]  R. J. Guirro,et al.  EFEITOS DA ESTIMULAÇÃO ELÉTRICA NEUROMUSCULAR SOBRE O MEMBRO POSTERIOR IMOBILIZADO DE RATOS DURANTE 15 DIAS: ANÁLISES METABÓLICAS E MORFOMÉTRICAS , 2006 .

[16]  S. Carlos Propriedades mecânicas do músculo esquelético de ratas wistar pós imobilização e exercício físico em esteira , 2006 .

[17]  M. Järvinen,et al.  Organization and distribution of intramuscular connective tissue in normal and immobilized skeletal muscles , 2004, Journal of Muscle Research & Cell Motility.

[18]  Y. Ohira,et al.  Profiles of connectin (titin) in atrophied soleus muscle induced by unloading of rats. , 2003, Journal of applied physiology.

[19]  Claudia Mathias Marcos de Carvalho Efeitos da imobilização e do exercício físico em algumas propriedades mecânicas do músculo esquelético. , 2001 .

[20]  R. Balnave,et al.  The effect of position of immobilisation on resting length, resting stiffness, and weight of the soleus muscle of the rabbit , 1993, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[21]  M. Järvinen,et al.  Effect of the position of immobilization upon the tensile properties of the rat gastrocnemius muscle. , 1992, Archives of physical medicine and rehabilitation.

[22]  M. Stone Implications for connective tissue and bone alterations resulting from resistance exercise training. , 1988, Medicine and science in sports and exercise.

[23]  G. Goldspink,et al.  The importance of stretch and contractile activity in the prevention of connective tissue accumulation in muscle. , 1988, Journal of anatomy.

[24]  M. Järvinen,et al.  Healing of a crush injury in rat striated muscle. 3. A micro-angiographical study of the effect of early mobilization and immobilization on capillary ingrowth. , 2009, Acta pathologica et microbiologica Scandinavica. Section A, Pathology.

[25]  M. Järvinen,et al.  Healing of a crush injury in rat striated muscle. 4. Effect of early mobilization and immobilization on the tensile properties of gastrocnemius muscle. , 1976, Acta chirurgica Scandinavica.