The mean chance of ultimate ruin time in random fuzzy insurance risk model

In this paper, we study a modified risk model in which both the claim amount and premium are assumed to be random fuzzy variables. In this risk model, some new theorems concerning the mean chance of ultimate ruin time are proved in two cases where the initial surplus is zero and nonzero. Finally, a numerical example is mentioned to illustrate the method.

[1]  Baoding Liu,et al.  Uncertainty Theory - A Branch of Mathematics for Modeling Human Uncertainty , 2011, Studies in Computational Intelligence.

[2]  Yian-Kui Liu,et al.  Expected value of fuzzy variable and fuzzy expected value models , 2002, IEEE Trans. Fuzzy Syst..

[3]  Kai Yao,et al.  A modified insurance risk process with uncertainty , 2015 .

[4]  Yian-Kui Liu,et al.  Fuzzy Random Variables: A Scalar Expected Value Operator , 2003, Fuzzy Optim. Decis. Mak..

[5]  Baoding Liu,et al.  Theory and Practice of Uncertain Programming , 2003, Studies in Fuzziness and Soft Computing.

[8]  Wansheng Tang,et al.  Random fuzzy renewal process , 2006, Eur. J. Oper. Res..

[9]  Hans U. Gerber,et al.  An introduction to mathematical risk theory , 1982 .

[10]  D. Dickson,et al.  Some ruin problems for the MAP risk model , 2015 .

[11]  Shuanming Li,et al.  On ruin for the Erlang(n) risk process , 2004 .

[12]  D. Dickson,et al.  Ruin probabilities for Erlang(2) risk processes , 1998 .

[13]  Yian-Kui Liu,et al.  Expected Value Operator of Random Fuzzy Variable, Random Fuzzy Expected Value Models , 2003, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[14]  Hua Dong,et al.  The ruin problem in a renewal risk model with two-sided jumps , 2013, Math. Comput. Model..

[15]  Athanasios C. Rakitzis,et al.  On the number of claims until ruin in a two-barrier renewal risk model with Erlang mixtures , 2016, J. Comput. Appl. Math..

[16]  Tao Huang,et al.  Risk model with fuzzy random individual claim amount , 2009, Eur. J. Oper. Res..

[17]  H. Ammeter A generalization of the collective theory of risk in regard to fluctuating basic-probabilities , 1948 .

[18]  Wansheng Tang,et al.  Modeling Random Fuzzy Renewal Reward Processes , 2008, IEEE Transactions on Fuzzy Systems.

[19]  David C. M. Dickson,et al.  On a class of renewal risk processes , 1998 .