Projection Filters for Data Analysis
暂无分享,去创建一个
[1] D. Slepian. Prolate spheroidal wave functions, fourier analysis, and uncertainty — V: the discrete case , 1978, The Bell System Technical Journal.
[2] Jeffrey Park,et al. Envelope estimation for quasi-periodic geophysical signals in noise; a multitaper approach , 1992 .
[3] David J. Thomson,et al. Processes with Level-dependent Delay , 1993 .
[4] Kirk A. Maasch,et al. Plio-Pleistocene time evolution of the 100-kyr cycle in marine paleoclimate records , 1992 .
[5] D. Thomson,et al. Spectrum estimation and harmonic analysis , 1982, Proceedings of the IEEE.
[6] H. Pollak,et al. Prolate spheroidal wave functions, fourier analysis and uncertainty — III: The dimension of the space of essentially time- and band-limited signals , 1962 .
[7] D. Thomson. Quadratic-inverse spectrum estimates: applications to palaeoclimatology , 1990, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.
[8] Per Christian Hansen,et al. Analysis of Discrete Ill-Posed Problems by Means of the L-Curve , 1992, SIAM Rev..
[9] W. Cleveland. Robust Locally Weighted Regression and Smoothing Scatterplots , 1979 .
[10] Jeffrey Park. Observed envelopes of coupled seismic free oscillations , 1990 .
[11] D.J. Thomson,et al. Processes with level-dependent delay (QSO 0957+561 gravitational lens) , 1993, [1993 Proceedings] IEEE Signal Processing Workshop on Higher-Order Statistics.
[12] W. Cleveland,et al. Computational methods for local regression , 1991 .