Projection Filters for Data Analysis

This paper describes the use of moving narrow-band projection operators for finding precision complex demodulators for data analysis. These projection operators are made up of discrete Slepian sequences and replace the usual weighting procedures with coherent sidelobe cancellation to reduce out-of-band interference. A sliding block of length N gives N different estimates for each output sample. We use weighted averages, and variances, of the N available projections at each time step.

[1]  D. Slepian Prolate spheroidal wave functions, fourier analysis, and uncertainty — V: the discrete case , 1978, The Bell System Technical Journal.

[2]  Jeffrey Park,et al.  Envelope estimation for quasi-periodic geophysical signals in noise; a multitaper approach , 1992 .

[3]  David J. Thomson,et al.  Processes with Level-dependent Delay , 1993 .

[4]  Kirk A. Maasch,et al.  Plio-Pleistocene time evolution of the 100-kyr cycle in marine paleoclimate records , 1992 .

[5]  D. Thomson,et al.  Spectrum estimation and harmonic analysis , 1982, Proceedings of the IEEE.

[6]  H. Pollak,et al.  Prolate spheroidal wave functions, fourier analysis and uncertainty — III: The dimension of the space of essentially time- and band-limited signals , 1962 .

[7]  D. Thomson Quadratic-inverse spectrum estimates: applications to palaeoclimatology , 1990, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.

[8]  Per Christian Hansen,et al.  Analysis of Discrete Ill-Posed Problems by Means of the L-Curve , 1992, SIAM Rev..

[9]  W. Cleveland Robust Locally Weighted Regression and Smoothing Scatterplots , 1979 .

[10]  Jeffrey Park Observed envelopes of coupled seismic free oscillations , 1990 .

[11]  D.J. Thomson,et al.  Processes with level-dependent delay (QSO 0957+561 gravitational lens) , 1993, [1993 Proceedings] IEEE Signal Processing Workshop on Higher-Order Statistics.

[12]  W. Cleveland,et al.  Computational methods for local regression , 1991 .