Coexistence of asymmetric hidden chaotic attractors in a new simple 4-D chaotic system with curve of equilibria

Abstract This paper reports a new 4-D dissipative chaotic system. When compared with the available 4-D chaotic/hyperchaotic systems, the unique properties of the proposed system are (i) the system exhibits coexistence of different kind of asymmetric hidden attractors, (ii) the system has a curve of equilibria and (ii) the system is simple. This system does not satisfy Shilnikov criterion for the existence of chaos. The system has a total of eight terms including only one nonlinear term. The coexistence of rich chaotic dynamics in the system is investigated through Lyapunov spectrum, bifurcation diagram, Poincare map, frequency spectrum and attractors plot. The coexistence of the asymmetric hidden dynamics is shown using chaotic attractors, 3- torus and 2-torus plots. The system is developed from the type-IV 3-D Rossler chaotic system.

[1]  Sundarapandian Vaidyanathan,et al.  A Chaotic System With Equilibria Located on the Rounded Square Loop and Its Circuit Implementation , 2016, IEEE Transactions on Circuits and Systems II: Express Briefs.

[2]  Sundarapandian Vaidyanathan,et al.  A chaotic system with infinite equilibria located on a piecewise linear curve , 2016 .

[3]  Nikolay V. Kuznetsov,et al.  Hidden oscillations in mathematical model of drilling system actuated by induction motor with a wound rotor , 2014 .

[4]  Guang Zeng,et al.  Hyperchaos and horseshoe in a 4D memristive system with a line of equilibria and its implementation , 2014, Int. J. Circuit Theory Appl..

[5]  Julien Clinton Sprott,et al.  A Simple Chaotic Flow with a Plane of Equilibria , 2016, Int. J. Bifurc. Chaos.

[6]  Julien Clinton Sprott,et al.  Simple Chaotic Flows with a Curve of Equilibria , 2016, Int. J. Bifurc. Chaos.

[7]  Viet-Thanh Pham,et al.  A Chaotic System with Different Shapes of Equilibria , 2016, Int. J. Bifurc. Chaos.

[8]  J. Sprott Elegant Chaos: Algebraically Simple Chaotic Flows , 2010 .

[9]  Tomas Gotthans,et al.  New class of chaotic systems with circular equilibrium , 2015 .

[10]  Julien Clinton Sprott,et al.  Simple chaotic flows with a line equilibrium , 2013 .

[11]  Julien Clinton Sprott,et al.  A Proposed Standard for the Publication of New Chaotic Systems , 2011, Int. J. Bifurc. Chaos.

[12]  Binoy Krishna Roy,et al.  Synchronization and anti-synchronization of Lu and Bhalekar–Gejji chaotic systems using nonlinear active control , 2014 .

[13]  G. Leonov,et al.  Localization of hidden Chuaʼs attractors , 2011 .

[14]  Julien Clinton Sprott,et al.  Simple Chaotic Flow with Circle and Square Equilibrium , 2016, Int. J. Bifurc. Chaos.

[15]  G. Leonov,et al.  Hidden oscillations in dynamical systems , 2011 .

[16]  Shutang Liu,et al.  Chaotic behaviour of nonlinear coupled reaction–diffusion system in four-dimensional space , 2014 .

[17]  Viet-Thanh Pham,et al.  Three-Dimensional Chaotic Autonomous System with a Circular Equilibrium: Analysis, Circuit Implementation and Its Fractional-Order Form , 2016, Circuits Syst. Signal Process..

[18]  Sundarapandian Vaidyanathan,et al.  A Chaotic System with Different Families of Hidden Attractors , 2016, Int. J. Bifurc. Chaos.

[19]  Julien Clinton Sprott,et al.  Bistability in a hyperchaotic system with a line equilibrium , 2014 .

[20]  Guanrong Chen,et al.  On a new asymmetric chaotic system , 2008 .

[21]  Nikolay V. Kuznetsov,et al.  Hidden attractor in smooth Chua systems , 2012 .

[22]  Nikolay V. Kuznetsov,et al.  Hidden attractors in Dynamical Systems. From Hidden oscillations in Hilbert-Kolmogorov, Aizerman, and Kalman Problems to Hidden Chaotic Attractor in Chua Circuits , 2013, Int. J. Bifurc. Chaos.

[23]  Guanrong Chen,et al.  Constructing a chaotic system with any number of equilibria , 2012, 1201.5751.

[24]  Jian Ma,et al.  Simplified hyper-chaotic systems generating multi-wing non-equilibrium attractors , 2016 .

[25]  Chunhua Wang,et al.  A novel four-wing non-equilibrium chaotic system and its circuit implementation , 2016 .

[26]  Viet-Thanh Pham,et al.  Constructing and analyzing of a unique three-dimensional chaotic autonomous system exhibiting three families of hidden attractors , 2017, Math. Comput. Simul..

[27]  Guanrong Chen,et al.  A spherical chaotic system , 2015 .

[28]  Viet-Thanh Pham,et al.  Constructing a Novel No-Equilibrium Chaotic System , 2014, Int. J. Bifurc. Chaos.

[29]  Julien Clinton Sprott,et al.  Simple chaotic 3D flows with surfaces of equilibria , 2016 .

[30]  Ping Zhou,et al.  Hyperchaos, chaos, and horseshoe in a 4D nonlinear system with an infinite number of equilibrium points , 2014 .

[31]  Julien Clinton Sprott,et al.  Erratum to: ``Simple chaotic flows with a line equilibrium'' [Chaos, Solitons and Fractals 57 (2013) 79-84] , 2015 .

[32]  Guanrong Chen,et al.  YET ANOTHER CHAOTIC ATTRACTOR , 1999 .

[33]  Binoy Krishna Roy,et al.  Crisis and inverse crisis route to chaos in a new 3-D chaotic system with saddle, saddle foci and stable node foci nature of equilibria , 2016 .

[34]  Zhonglin Wang,et al.  A four-wing hyper-chaotic attractor generated from a 4-D memristive system with a line equilibrium , 2015 .

[35]  Ping Li,et al.  Research progress of multi-scroll chaotic oscillators based on current-mode devices , 2016 .

[36]  Nikolay V. Kuznetsov,et al.  Hidden attractor and homoclinic orbit in Lorenz-like system describing convective fluid motion in rotating cavity , 2015, Commun. Nonlinear Sci. Numer. Simul..

[37]  O. Rössler An equation for continuous chaos , 1976 .

[38]  Sajad Jafari,et al.  Three-dimensional chaotic autonomous system with only one stable equilibrium: Analysis, circuit design, parameter estimation, control, synchronization and its fractional-order form , 2014 .

[39]  S. Ikhdair,et al.  Bound states of spatially dependent mass Dirac equation with the Eckart potential including Coulomb tensor interaction , 2014, 1401.7142.

[40]  L. Chua,et al.  Methods of Qualitative Theory in Nonlinear Dynamics (Part II) , 2001 .

[41]  Ahmed S. Elwakil,et al.  Guest Editorial: Fractional-Order Circuits and Systems: Theory, Design, and Applications , 2016, Circuits Syst. Signal Process..

[42]  A. Wolf,et al.  Determining Lyapunov exponents from a time series , 1985 .

[43]  E. Lorenz Deterministic nonperiodic flow , 1963 .

[44]  Sundarapandian Vaidyanathan,et al.  A no-equilibrium hyperchaotic system with a cubic nonlinear term , 2016 .

[45]  Qigui Yang,et al.  A new Lorenz-type hyperchaotic system with a curve of equilibria , 2015, Math. Comput. Simul..

[46]  Manish Agrawal Coupled chaotic attractors and driving-induced bistability: A brief review , 2015 .

[47]  Daizhan Cheng,et al.  Bridge the Gap between the Lorenz System and the Chen System , 2002, Int. J. Bifurc. Chaos.

[48]  Julien Clinton Sprott,et al.  Coexisting Hidden Attractors in a 4-D Simplified Lorenz System , 2014, Int. J. Bifurc. Chaos.